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What is topology?
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Why topology?

4 ROBERT GHRIST

RϵCϵ

ϵ

Figure 2. A fixed set of points [upper left] can be completed to
a a Čech complex Cϵ [lower left] or to a Rips complex Rϵ [lower
right] based on a proximity parameter ϵ [upper right]. This Čech
complex has the homotopy type of the ϵ/2 cover (S1 ∨ S1 ∨ S1),
while the Rips complex has a wholly different homotopy type (S1∨
S2).

needed for a Čech complex. This virtue — that coarse proximity data on pairs of
nodes determines the Rips complex — is not without cost. The penalty for this
simplicity is that it is not immediately clear what is encoded in the homotopy type
of R. In general, it is neither a subcomplex of E

n nor does it necessarily behave
like an n-dimensional space at all (Figure 2).

1.4. Which ϵ? Converting a point cloud data set into a global complex (whether
Rips, Čech, or other) requires a choice of parameter ϵ. For ϵ sufficiently small,
the complex is a discrete set; for ϵ sufficiently large, the complex is a single high-
dimensional simplex. Is there an optimal choice for ϵ which best captures the
topology of the data set? Consider the point cloud data set and a sequence of Rips
complexes as illustrated in Figure 3. This point cloud is a sampling of points on
a planar annulus. Can this be deduced? From the figure, it certainly appears as
though an ideal choice of ϵ, if it exists, is rare: by the time ϵ is increased so as
to remove small holes from within the annulus, the large hole distinguishing the
annulus from the disk is filled in.

2. Algebraic topology for data

Algebraic topology offers a mature set of tools for counting and collating holes
and other topological features in spaces and maps between them. In the context of

Simplicial Complex

σ = [p0, p1, p2, …, pk−1]
Definition of k-simplex

P(X) = P(X0, X1, X2, …, Xk−1)
Multivariate information

Intrinsically  
higher-order!

Intrinsically 
non-local!

Ghrist, R. (2008). Barcodes: The persistent topology of data. Bulletin-American Mathematical Society, 45(1), 61.



Topology in the wild

This applies in networks as well as to data spaces



specifiestheshape.Acoordinatefreeapproachallowstopologythe
abilitytocomparedataderivedfromdifferentplatforms(different
coordinatesystems).

Thesecondkeyideaisthattopologystudiesthepropertiesof
shapesthatareinvariantunder‘‘small’’deformations.Todescribe
smalldeformations,imagineaprintedletter‘‘A’’onarubbersheet,
andimaginethatthesheetisstretchedinsomedirections.Theletter
willdeform,butthekeyfeatures,thetwolegsandtheclosedtriangle
remain.Inamoremathematicalsetting,theinvarianceproperty
meansthattopologically,acircle,anellipse,andtheboundaryofa
hexagonareallidentical,becausebystretchinganddeformingone
canobtainanyofthesethreeshapesfromanyother.Theproperty
thatthesefiguresshareisthefactthattheyareallloops.Thisinherent
propertyoftopologyiswhatallowsittobefarlesssensitivetonoise
andthus,possesstheabilitytopickouttheshapeofanobjectdespite
countlessvariationsordeformations.

Thethirdkeyideawithintopologyisthatofcompressedrepresen-
tationsofshapes.ImaginetheperimeteroftheGreatSaltLakewithall
itsdetail.Oftenacoarserrepresentationofthelake,suchasapoly-
gon,ispreferable.Topologydealswithfiniterepresentationsof
shapescalledtriangulations,whichmeansidentifyingashapeusing
afinitecombinatorialobjectcalledasimplicialcomplexoranetwork.
Aprototypicalexampleforthiskindofrepresentationistheiden-
tificationofacircleashavingthesameshapeasahexagon.The
hexagoncanbedescribedusingonlyalistof6nodes(withoutany
placementinspace)and6edges,togetherwithdataindicatingwhich
nodesbelongtowhichedges.Thiscanberegardedasaformof
compression,wherethenumberofpointswentfrominfinitetofinite.
Someinformationislostinthiscompression(e.g.curvature),butthe
importantfeature,i.e.thepresenceofaloop,isretained.

TopologicalDataAnalysisissensitivetobothlargeandsmallscale
patternsthatoftenfailtobedetectedbyotheranalysismethods,such
asprincipalcomponentanalysis,(PCA),multidimensionalscaling,
(MDS),andclusteranalysis.PCAandMDSproduceunstructured
scatterplotsandclusteringmethodsproducedistinct,unrelated
groups.Thesemethodologiessometimesobscuregeometricfeatures
thattopologicalmethodscapture.Thepurposeofthispaperisto
describeatopologicalmethodforanalyzingdataandtoillustrateits
utilityinseveralrealworldexamples.Thefirstexampleisontwo
differentgeneexpressionprofilingdatasetsonbreasttumors.Here
weshowthattheshapesofthebreastcancergeneexpressionnet-
worksallowustoidentifysubtlebutpotentiallybiologicallyrelevant
subgroups.Wehaveinnovatedfurtheronthetopologicalmethods

4,5

byimplementingtheideaofvisuallycomparingshapesacrossmul-
tiplenetworksinthebreastcancercase.Thesecondexampleisbased
on20yearsofvotingbehaviorofthemembersoftheUSHouseof
Representatives.Hereweshowthattheshapesofthenetworks
formedacrosstheyearstellushowcohesiveorfragmentedthevoting
behaviorisfortheUSHouseofRepresentatives.Thethirdexampleis
definingthecharacteristicsofNBAbasketballplayersviatheirper-
formancestatistics.Throughtheseadvancedimplementationsof
topologicalmethods,wehaveidentifiedfinerstratificationsofbreast
cancerpatients,votingpatternsoftheHouseofRepresentativesand
the13playingstylesoftheNBAplayers.

Results
Mathematicalunderpinningsoftopologicaldataanalysis(TDA).
TDAappliesthethreefundamentalconceptsintopologydiscussed
intheintroductiontostudylargesetsofpointsobtainedfromreal-
worldexperimentsorprocesses.Thecoreproblemaddressedby
TDAishowtousedatasampledfromanidealizedspaceorshape
toinferinformationaboutit.Figure1illustrateshowourparticular
topologicalmethodbasedonageneralizedReebgraph

6
,operateson

sampledpointsfromahumanhand.Themethodtakesthreeinputs:
adistancemetric,oneormorefilterfunctions(realvaluedquantities
associatedtothedatapoints),andtworesolutionparameters

(‘‘resolution’’and‘‘percentoverlap’’),andconstructsanetworkof
nodeswithedgesbetweenthem.Thelayoutsofthenetworksare
chosenusingaforcedirectedlayoutalgorithm.Assuch,the
coordinatesofanyindividualnodehavenoparticularmeaning.
Onlytheconnectionsbetweenthenodeshavemeaning.Hence,a
networkcanbefreelyrotatedandplacedindifferentpositionswith
noimpactontheinterpretationoftheresults.Thenodesrepresent
setsofdatapoints,andtwonodesareconnectedifandonlyiftheir
correspondingcollectionsofdatapointshaveapointincommon
(seetheMethodssection).Thefilterfunctionsarenotnecessarily
linearprojectionsonadatamatrix,althoughtheymaybe.Weoften
usefunctionsthatdependonlyonthedistancefunctionitself,suchas
theoutputofadensityestimatororameasureofcentrality.One
measureofcentralityweuselaterisL-infinitycentrality,which
assignstoeachpointthedistancetothepointmostdistantfromit.
WhenwedouselinearprojectionssuchasPCA,weobtaina
compressedandmorerefinedversionofthescatterplotproduced
bythePCAanalysis.Notethatinfigure1,wecanrepresentadataset
withthousandsofpoints(pointsinamesh)in2dimensionsbya
networkof13nodesand12edges.Thecompressionwillbeeven
morepronouncedinlargerdatasets.

Theconstructionofthenetworkinvolvesanumberofchoices
includingtheinputvariables.Itisusefultothinkofitasacamera,

Figure1|Theapproachasappliedtoadatasetinouranalysispipeline.
A)A3Dobject(hand)representedasapointcloud.B)Afiltervalueis
appliedtothepointcloudandtheobjectisnowcoloredbythevaluesofthe
filterfunction.C)Thedatasetisbinnedintooverlappinggroups.D)Each
binisclusteredandanetworkisbuilt.

www.nature.com/scientificreports
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Persistent homology pipeline (Ghrist  2008)

Homological properties
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Theorem 2.3 ([22]). For a finite persistence module C with field F coefficients,

(2.3) H∗(C; F ) ∼=
⊕

i

xti · F [x] ⊕

⎛

⎝

⊕

j

xrj · (F [x]/(xsj · F [x]))

⎞

⎠ .

This classification theorem has a natural interpretation. The free portions of
Equation (2.3) are in bijective correspondence with those homology generators
which come into existence at parameter ti and which persist for all future parame-
ter values. The torsional elements correspond to those homology generators which
appear at parameter rj and disappear at parameter rj + sj . At the chain level,
the Structure Theorem provides a birth-death pairing of generators of C (excepting
those that persist to infinity).

2.3. Barcodes. The parameter intervals arising from the basis for H∗(C; F ) in
Equation (2.3) inspire a visual snapshot of Hk(C; F ) in the form of a barcode. A
barcode is a graphical representation of Hk(C; F ) as a collection of horizontal line
segments in a plane whose horizontal axis corresponds to the parameter and whose
vertical axis represents an (arbitrary) ordering of homology generators. Figure 4
gives an example of barcode representations of the homology of the sampling of
points in an annulus from Figure 3 (illustrated in the case of a large number of
parameter values ϵi).

H0

H1

H2

ϵ

ϵ

ϵ

Figure 4. [bottom] An example of the barcodes for H∗(R) in the
example of Figure 3. [top] The rank of Hk(Rϵi

) equals the number
of intervals in the barcode for Hk(R) intersecting the (dashed) line
ϵ = ϵi.
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Figure 3. A sequence of Rips complexes for a point cloud data
set representing an annulus. Upon increasing ϵ, holes appear and
disappear. Which holes are real and which are noise?

high-dimensional data, algebraic topology works like a telescope, revealing objects
and features not visible to the naked eye. In what follows, we concentrate on
homology for its balance between ease of computation and topological resolution.
We assume a rudimentary knowledge of homology, as is to be found in, say, Chapter
2 of [15].

Despite being both computable and insightful, the homology of a complex asso-
ciated to a point cloud at a particular ϵ is insufficient: it is a mistake to ask which
value of ϵ is optimal. Nor does it suffice to know a simple ‘count’ of the number and
types of holes appearing at each parameter value ϵ. Betti numbers are not enough.
One requires a means of declaring which holes are essential and which can be safely
ignored. The standard topological constructs of homology and homotopy offer no
such slack in their strident rigidity: a hole is a hole no matter how fragile or fine.

2.1. Persistence. Persistence, as introduced by Edelsbrunner, Letscher, and Zomo-
rodian [12] and refined by Carlsson and Zomorodian [22], is a rigorous response to
this problem. Given a parameterized family of spaces, those topological features
which persist over a significant parameter range are to be considered as signal with
short-lived features as noise. For a concrete example, assume that R = (Ri)N
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Consensus map of all genes differentially 
expressed between any pair of 96 regions in at 
least five of six specimens.   
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Canonical genetic signatures of the adult human brain."  
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ABSTRACT

Understanding how gene expression translates to and a�ects human behaviour is one of the
ultimate goals of neuroscience. In this paper, we present a pipeline based on Mapper, a
topological simplification tool, to analyze genes co-expression data. We first validate the
method by reproducing key results from the literature on the Allen Human Brain Atlas
and the correlations between resting-state fMRI and gene co-expression maps. We then
analyze a dopamine-related gene-set and find that co-expression networks produced by
Mapper returns a structure that matches the well-known anatomy of the dopaminergic
pathway. Our results suggest that network based descriptions can be a powerful tool to
explore the relationships between genetic pathways and their association with brain
function and its perturbation due to illness and/or pharmacological challenges.

AUTHOR SUMMARY

In this paper, we described a gene co-expression analysis pipeline that produces networks
that we show to be closely related to either brain function and to neurotransmitter
pathways. Our results suggest that this pipeline could be developed into a platform
enabling the exploration of the e�ects of physiological and pathological alterations to
specific gene-sets, including profiling drugs e�ects.

1 INTRODUCTION

The human brain is a highly complex organ whose function emerges from the integration of
cellular, anatomical and functional circuits Bassett and Gazzaniga (2011). This complexity
is thought to be crucial to provide the adaptability needed to maintain homoestasis and
adapt to environmental changes. The architecture of the human brain is ultimately shaped
by the human genome through the regulation of gene expression. In fact, the human brain
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low-dimensional space may differ across participants, the
topological relationships encoded by the shape graph itself are
interpretable and comparable across participants (as we shall
discuss later).

To reveal the underlying temporal structure in the CMP
dataset, the aforementioned Mapper approach was applied to
each participant in the CMP dataset. For qualitative analysis, we
annotated the nodes in these shape graphs with colors based on
the corresponding task at each time frame (Fig. 2a). Further, if a
node contained time frames from multiple tasks, we visualized
that node using a pie chart denoting the proportion of time
frames that belong to each task within such node (Fig. 2b). Graph
theoretical metrics were next used to quantify the topological
properties of each participant’s shape graph.

Quantifying the mesoscale structure of shape graphs. Graph
theory (or Network Science) is currently widely used in the field
of neuroscience to provide summary statistics of the complex
interactions between different entities or nodes. While interesting
insights can be captured by analyzing properties of each node or
edge in the network (i.e., at the local scale) or by analyzing the
network as whole (i.e., at the global scale), the intermediate (or
mesoscale) properties appear particularly well suited for analyzing
and comparing the structure of complex networks38,39. In parti-
cular, considerable effort has gone into identifying two distinct
types of mesoscale structures in a variety of complex networks.
The first and perhaps the most widely used mesoscale structure is
the community structure, where cohesive groups called commu-
nities consist of nodes that are densely connected to other nodes
within communities while being only sparsely connected to nodes
between communities40. In the context of shape graphs, the
presence of communities could represent a modular organization
with specialized whole-brain functional configurations for dif-
ferent types of information processing (or tasks). An increasingly
second most typical mesoscale structure is the core−periphery

structure41. Here, one attempts to determine the core nodes,
which are not only densely connected to each other but are also
central to the entire network. A presence of core nodes in shape
graphs could indicate whole-brain functional configurations that
consistently occur throughout the scan. For example, core nodes
could represent neural processes related to task-switching that the
brain consistently passes through during a multitask experimental
paradigm. The peripheral nodes on the other hand are only
sparsely connected. The examination of the core–periphery
structure of a graph could reveal the overall arrangement of the
network39. It is important to note that in the real world, networks
can have both communities and core−periphery structures and
hence it is desirable to investigate both simultaneously.

To exemplify how topological properties of shape graphs can
provide behaviorally relevant information at the single-
participant level, we estimated both community and core
−periphery mesoscale structures. Briefly, to estimate the degree
or quality of the community structure in shape graphs, we
assessed the widely used quality function Qmod

42. The community
assignment for each node in a shape graph was chosen to be one
of the four tasks (i.e., Rest, Memory, Video, and Math) based on
the majority of time frames contained in the node that belonged
to the respective task. Across the CMP dataset, we observed
participants’ shape graphs with varying degree of modularity
(ranging from Qmod= 0.37 to 0.61 with a mean= 0.48 and SD=
0.07; Fig. 3a). Remarkably, the degree of modularity was observed
to be associated with task performance across the three CMP
tasks (%correct r= 0.56, p= 0.016; Fig. 3b), such that high
modularity was associated with better performance on the CMP
tasks. Thus, highlighting that participants with a higher degree of
community structure in their shape graph better performed
across different cognitive tasks during the CMP. In other words,
participants with specialized whole-brain configurations for
different tasks were those with the highest overall task
performance. We examined this claim using an independent
validation analysis (see Anchoring topology of shape graphs into

a b

Instructions
Resting state
Working memory
Video
Math

Task-fMRI dataset from
one CMP participant S01

Time (3D volume every 1.5 s)

Fig. 2 Revealing the shape of brain’s dynamical organization. a Depicts the shape graph for one of the representative participants (S01) from the CMP
dataset. The shape graph was annotated using colors and pie-chart visualization scheme to depict how the tasks were represented in each shape graph. b
Shows a zoomed-in version of the densely connected region of the shape graph to show the use of pie-chart visualization
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After standard fMRI preprocessing, each participant’s 4D fMRI
data were first transformed into a matrix, such that the rows
corresponded to the individual time frames (or volumes) and the
columns corresponded to the intensity value at each voxel. Thus,
each row of this matrix represents the entire brain volume at any
time point during the session (Fig. 1a). The TDA-based Mapper is
next employed on this matrix to perform four steps—filtering,
binning, partial clustering, and finally constructing the shape graph
(Fig. 1b−e). Although data-driven optimization was employed to
find the best set of parameters for each of the Mapper steps, we
observed that the presented results are stable in the face of
extensive parameter perturbations (see Reliability of shape graphs).

As a first Mapper step, we applied a filtering (or dimensionality
reduction). This step is similar to the standard dimensionality
reduction techniques used in the machine learning literature.
However, unlike traditional linear dimensionality reduction
techniques, like principal component analysis (PCA) or
multi-dimensional scaling (MDS), we employed a nonlinear
dimensionality reduction method using a variant of stochastic
neighborhood estimation (SNE36,37). Nonlinear methods like
SNE allows for preservation of the local structure in the original
high-dimensional space after projection into the low-dimensional
space, which is typically not possible with linear methods like
PCA or MDS36. Thus, the time frames with similar activation
patterns in the original high-dimensional space will be projected
closer to each other in the reduced dimensional space (Fig. 1b).

To encapsulate the low-dimensional representation generated
by the filtering step, Mapper employs binning (or partitioning)
(Fig. 1c), followed by partial clustering within each bin. The
binning step partitions the low-dimensional space into over-
lapping bins by using two parameters—number of bins (or
resolution (R)) and percentage of overlap between bins (or gain
(G)). Within each bin, single-linkage clustering is performed to
condense the time frames into a set of one or more clusters
(Fig. 1d). This step results in a compressed representation, as
fewer points (or clusters) are now required to represent the data
as compared to the entire set of time frames. On average, for each
participant, the compressed representation contained ~279 points
(SD= 60) (as opposed to 1017 acquired time frames).
It is important to note that this clustering step is different
from traditional temporal smoothing as the time frames
within each cluster are not averaged and the mapping between
individual clusters and their corresponding time frames is
preserved.

Finally, to generate a combinatorial object or shape graph from
the low-dimensional compressed representation, the Mapper
treats each cluster as a node in the graph and connects these
nodes with an edge if they share time frames (Fig. 1e). The final
shape graph can be conceptualized as a low-dimensional
depiction of how the brain dynamically evolved across different
functional configurations during the scan. While the actual
interpretation of the latent variables associated with the projected

Time (3D volume every 1.5 s)
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This cluster represents three time frames

Cluster nodes are connected by an edge if
they have common time frames. Due to
inherent overlapping between bins the clusters
do indeed share points

Fig. 1 Application of Mapper to 4D fMRI data. a Pre-processed four-dimensional fMRI data from each participant was fed into the analysis. For each
participant, the entire data matrix (i.e., #TRs ×#Voxels) was used for analysis. b Non-linear dimensionality reduction was done during the filtering step to
project fMRI data into a lower two-dimension set (represented by dimensions (f, g)). c Two-dimensional binning was then performed by dividing the lower-
dimension space into smaller bins (determined by the resolution parameter, R) with certain overlap (determined by the gain parameter, G). d Partial
clustering was then performed to get a compressed representation by collapsing data into fewer nodes, where each node represents a cluster, and the size
of each node depicts the number of data points inside each cluster. e After clustering, nodes that share data points (i.e., time frames in this case) are linked
together with an edge to create the final compressed combinatorial representation (or graph)
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anatomy). Please note that because the quantification of
community structure was done on the shape graph as a whole
(i.e., across tasks), we combined task performance measures
across the working memory, video and math tasks.

To quantify the core−periphery structure in each participant’s
shape graph, we employed the generalized Borgatti and Everett41

algorithm that provides a coreness score (CS) for each node. This
algorithm assigns CS along a continuous spectrum with nodes
that lie most deeply in a network core with a CS ~1 to those that
are in the periphery with a CS ~039. Figure 4a presents shape
graphs annotated (or colored) by the task type as well as CS for
two representative participants. Remarkably, across all partici-
pants, the nodes containing resting state time frames were mostly
represented in the peripheries (mean CSRest [SD]= 0.15 [0.06]),
while the nodes containing time frames from cognitively
demanding tasks mainly lied relatively deeper inside the shape
graph (mean CSW.M. [SD]= 0.28 [0.04]; mean CSMath [SD]=
0.30 [0.04]; and mean CSVideo [SD]= 0.22 [0.06]). One-way
ANOVA revealed a significant effect of the task (F(3,51)= 24.06,
p < 0.0001), such that CSRest was observed to be significantly
lower than the CS of other three tasks, while coreness scores for
the working memory and math tasks were similar but higher than
that of the video task. This result indicates more consistency in
the whole-brain functional configurations was present during
math and memory task as compared to the less demanding
resting state.

To test the validity of the observed non-trivial arrangement of
resting state nodes in the peripheries while the cognitively
demanding nodes in the core, we employed three different null
models. Overall, the CS of nodes with resting time frames was
observed to be lower than all the three corresponding null models
(ps < 0.001), while the CS of nodes with working memory or math
frames was higher than all the three corresponding null models
(ps < 0.005). No significant difference was observed for the CS of
nodes with time frames from the video task and the correspond-
ing null models (Fig. 4b).

Anchoring topology of shape graphs in anatomy. To ground the
shape graphs and their properties into neurophysiology, we
provide three approaches that attempt to reveal the underlying
patterns of brain activity putatively responsible for the observed
topological features. In the first approach, we use spatial mixture
modeling (SMM)43 to reveal changes in brain activation maps
from one time frame to the next. The SMM approach includes
fitting a mixture of distributions and using a spatial Markov
random field to regularize the labeling of voxels into null, acti-
vated or deactivated. Thus, for each node in the shape graph and
the containing time frames, we generated whole-brain activation
(and deactivation) maps. To interactively examine the temporal
variations in these activation maps, we developed a web-tool
(Supplementary Figs. 2−3 and Supplementary Movie 1). The
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In this proof-of-concept study, we provide evidence that TDA-based Mapper approach effectively represents 
and characterizes HOIs in the brain. Importantly, our results further amplify previous work suggesting that 
HOIs might better represent cognitive processes than nodal or pair-wise interactions. Future work is needed to 
validate these results against carefully crafted null models as well as across different datasets.
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1Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; 2Department of Psychological and Brain Sciences, Indiana University, 
Bloomington, IN, USA; 3Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA; 4Institute of Bioengineering, École Polytechnique 
Fédérale de Lausanne, Switzerland; 5ISI Foundation, Torino, Italy

Motivation
The brain is typically characterized by a set of interactions between 
different regions, which govern its emergent dynamics. Most previous 
literature in network neuroscience has focused on pairwise interactions 
between brain regions, where population insights can be derived by 
representing and analyzing the system as a graph (Fornito et al., 2016). 
However, increasing evidence points towards higher-order interactions (e.g., 
triplets, quadruplets; denoted as HOIs) between brain regions as a major 
factor in shaping the dynamical properties of the brain (Battiston et al., 
2021; Faskowitz et al., 2020; Owen et al., 2021). To further this line of 
research, two main issues need to be addressed. First, with increasing 
order of interaction, novel approaches are required to better represent and 
characterize the dynamical structure (or manifold) of HOIs. Second, new 
studies are required to explore the nature of information captured by 
different HOIs. We aim to address these issues using tools from 
Topological Data Analysis (TDA).

Data Results
Continuous multi-task fMRI data

#poster#

Methods

Conclusions

Mapper-generated manifold graphs for the three HOIs from three representative participants are shown in Fig. 
2A. Qualitatively, for these participants, as the degree of interaction increases so did the segregation of task-
types in the graph. Thus, suggesting that higher-order interactions better characterized differences across task 
types. This result was quantitatively summarized, across all participants, using a one-way ANOVA 
(F(2,53)=15.32, p=6.14 x 10-06). Further, post hoc t-tests revealed increasing segregation (modularity) with an 
increasing degree of interaction (all ps <0.05; Fig. 2B).
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We used a publicly available fMRI dataset (n=18)(Gonzalez-Castillo et al., 
2015), to estimate time-series for different degrees of HOIs. In this fMRI 
dataset, participants performed a continuous multitask experiment, where 
they were scanned continuously for a 25 min and 24 s long session while 
performing four different tasks (rest, working memory, math, and video). 
Each task was presented for two separate 3 min blocks, with each task 
block being preceded by a 12 s instruction period.  

Lastly, to characterize the Mapper-generated manifold graphs from each HOI, we annotated nodes in the graph 
by task type. The nodes with time frames from multiple tasks were visualized using pie charts to appropriately 
depict the proportion of time frames from each task (Fig. 1C). To examine the degree of separation between 
different task types, we estimated the quality of modularity (), where the community assignment for each node 
in the manifold graph was chosen to be one of the four tasks (i.e., Rest, Working Memory, Video, and Math) 
based on most time frames belonging to any one task.

Measuring higher-order interactions (HOIs)

Characterizing HOIs using Topological Data Analysis

As shown below, we included three degrees of HOIs, i.e., nodal (or first-
order), edge (or nodal co-fluctuations), and edge pairs (or edge co-
fluctuations). 

To characterize the dynamical structure of different HOIs, we fed the time-
series from each HOI into the TDA-based Mapper pipeline (Saggar et al., 
2018, 2021; Singh et al., 2007). Mapper has been previously shown to 
capture task-evoked transitions in the whole-brain activity patterns at the 
highest spatiotemporal resolution (Saggar et al., 2018). Unlike previous 
time-varying analytics, Mapper does not require (1) splitting or averaging 
data across space or time (e.g., windows) at the outset; (2) a priori 
knowledge about the number of whole-brain configurations; or (3) strict 
assumptions about mutual exclusivity of brain states (e.g., vital for HMMs). 
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We used a publicly available fMRI dataset (n=18)(Gonzalez-Castillo et al., 
2015), to estimate time-series for different degrees of HOIs. In this fMRI 
dataset, participants performed a continuous multitask experiment, where 
they were scanned continuously for a 25 min and 24 s long session while 
performing four different tasks (rest, working memory, math, and video). 
Each task was presented for two separate 3 min blocks, with each task 
block being preceded by a 12 s instruction period.  

Lastly, to characterize the Mapper-generated manifold graphs from each HOI, we annotated nodes in the graph 
by task type. The nodes with time frames from multiple tasks were visualized using pie charts to appropriately 
depict the proportion of time frames from each task (Fig. 1C). To examine the degree of separation between 
different task types, we estimated the quality of modularity (), where the community assignment for each node 
in the manifold graph was chosen to be one of the four tasks (i.e., Rest, Working Memory, Video, and Math) 
based on most time frames belonging to any one task.

Measuring higher-order interactions (HOIs)

Characterizing HOIs using Topological Data Analysis

As shown below, we included three degrees of HOIs, i.e., nodal (or first-
order), edge (or nodal co-fluctuations), and edge pairs (or edge co-
fluctuations). 

To characterize the dynamical structure of different HOIs, we fed the time-
series from each HOI into the TDA-based Mapper pipeline (Saggar et al., 
2018, 2021; Singh et al., 2007). Mapper has been previously shown to 
capture task-evoked transitions in the whole-brain activity patterns at the 
highest spatiotemporal resolution (Saggar et al., 2018). Unlike previous 
time-varying analytics, Mapper does not require (1) splitting or averaging 
data across space or time (e.g., windows) at the outset; (2) a priori 
knowledge about the number of whole-brain configurations; or (3) strict 
assumptions about mutual exclusivity of brain states (e.g., vital for HMMs). 

1st order 
(activation)

2nd order 
(Edge-
timeseries)

3rd order 
(Edge-pair 
timeseries)

…

Comparison to 
other methods

Annotating Mapper-generated graphs using task type

Approximate activity 
landscapes using topology

Morandini, Petri, Saggar, in prep



METHODS    -   Fingerprints

  Connectivity Mixing Matrix

Def. Connectivity Mixing Matrix. Given  the number of classes:




where .

C
C = (cij)C

i,j=1 cij = ∑
ti ∈ i

∑
tj ∈ j

χti,tj,

χti,tj = {1 if nodeti = nodetj or ∃ edge(nodeti, nodetj)
0 otherwise

Topological fingerprinting(in general)

Morandini, Petri, Saggar, in prep



RESULTS    -   Real vs Simulated brain dynamics
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Topological brain fingerprinting



Is the signal strong enough across subjects?

Morandini, Petri, Saggar, in prep

Topological brain fingerprinting

RESULTS    -  Brain dataset

  Attribute Assortativity Coefficient

r

METHODS    -   Network Theory

  Attribute Assortativity Coefficient

Def. Attribute assortativity coefficient. Assigned every node to a class:


.r =
Tr(e) − | |e2 | |2

1 − | |e2 | |2

Def. Mixing Matrix.  Given the classes , assigned to each node, be  the number 
of links between nodes from class  to class . The mixing matrix of the network is 


  

where  is the total number of ordered links.        

1,…, C Mij
i j

e = M
E

,

E

RESULTS    -  Brain dataset

  Jensen-Shannon Modularity

Q J
S

METHODS    -   Network Theory

  Community Structure

Def. Modularity. Assigned a class  to each node :


. 

ci i

Q = 1
2L

N

∑
i, j=1

(aij −
kikj

2L )δ(ci, cj)f



Jensen-Shannon 

divergence

f(ci, cj) = DJS(ci | |cj)

Def. Community(module). Subset of nodes densely connected. METHODS    -   Fingerprints

  Topological Fingerprint

Def. Self-identifiability. Given  the number of classes and  the CMM:

.


Def. Others-identifiability. Given  the number of classes and  the CMM:


.

C C
Iself(i) = cii

C C
Iothers(i) = 1

2 ∑
j≠i

(cij + cji)

Def. Topological fingerprint. Given  the number of classes and  the CMM:    


   


where  and  are the average self and others identifiability.

C C

< Idiff > =
< Iself > − < Iothers >

< Iself > ,

< Iself > < Iothers >

RESULTS    -   Real vs Simulated brain dynamics

  Topological Fingerprint
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Subjects Age-groups
Van De Ville, Dimitri, et al. "When makes you unique: temporality of the 

human brain fingerprint." Science advances 7.42 (2021): eabj0751.

——————Intensive—————- —Discriminative—



Topo+Info brain fingerprintingMETHODS    -  Information Theory

  Shannon Entropy

Def. Shannon Entropy. Expected surprise of a random discrete variable , distributed 
according to :


.

X
p : 𝒳 → [0,1]

H(X) = − ∑
x∈𝒳

p(x) log(p(x))

Def. Joint Entropy. Expected surprise of a set of random discrete variables
, distributed according to :


.

X = X1, X2, …, Xn pi : 𝒳i → [0,1], i = 1,…, n
H(X) = H(X1, …, Xn) = − ∑

xi∈𝒳i, i=1,…,n
p(x1, …xn) log(p(x1, …, xn))

METHODS    -  Information Theory

  -informationΩ

Def. -information.


.

Ω

Ω(X) = Ω(X1, …, Xn) = (n − 2)H(X) −
n

∑
i=1

(H(Xi) − H(X−i))

Ω(X) > 0 Ω(X) < 0
REDUNDANCY SYNERGY

Morandini, Petri, Saggar, in prep

RESULTS    -  Redundant and Synergistic Behavior

  Assortativity and ModularityRESULTS    -  Redundant and Synergistic Behavior

  Assortativity and Modularity RESULTS    -  Redundant and Synergistic Behaviour

  Topological Fingerprints
——————Intensive—————- —Discriminative—



• Topological information (simplification) discriminates well across 
individuals

• Stronger effect for higher-order timeseries

• Global markers, but no relation to the actual synergy/redundancy patterns 

Topo+Info brain fingerprinting
Summing up



Can topology  
quantify 

 local shapes?
Functional, structural, you name it…



specifiestheshape.Acoordinatefreeapproachallowstopologythe
abilitytocomparedataderivedfromdifferentplatforms(different
coordinatesystems).

Thesecondkeyideaisthattopologystudiesthepropertiesof
shapesthatareinvariantunder‘‘small’’deformations.Todescribe
smalldeformations,imagineaprintedletter‘‘A’’onarubbersheet,
andimaginethatthesheetisstretchedinsomedirections.Theletter
willdeform,butthekeyfeatures,thetwolegsandtheclosedtriangle
remain.Inamoremathematicalsetting,theinvarianceproperty
meansthattopologically,acircle,anellipse,andtheboundaryofa
hexagonareallidentical,becausebystretchinganddeformingone
canobtainanyofthesethreeshapesfromanyother.Theproperty
thatthesefiguresshareisthefactthattheyareallloops.Thisinherent
propertyoftopologyiswhatallowsittobefarlesssensitivetonoise
andthus,possesstheabilitytopickouttheshapeofanobjectdespite
countlessvariationsordeformations.

Thethirdkeyideawithintopologyisthatofcompressedrepresen-
tationsofshapes.ImaginetheperimeteroftheGreatSaltLakewithall
itsdetail.Oftenacoarserrepresentationofthelake,suchasapoly-
gon,ispreferable.Topologydealswithfiniterepresentationsof
shapescalledtriangulations,whichmeansidentifyingashapeusing
afinitecombinatorialobjectcalledasimplicialcomplexoranetwork.
Aprototypicalexampleforthiskindofrepresentationistheiden-
tificationofacircleashavingthesameshapeasahexagon.The
hexagoncanbedescribedusingonlyalistof6nodes(withoutany
placementinspace)and6edges,togetherwithdataindicatingwhich
nodesbelongtowhichedges.Thiscanberegardedasaformof
compression,wherethenumberofpointswentfrominfinitetofinite.
Someinformationislostinthiscompression(e.g.curvature),butthe
importantfeature,i.e.thepresenceofaloop,isretained.

TopologicalDataAnalysisissensitivetobothlargeandsmallscale
patternsthatoftenfailtobedetectedbyotheranalysismethods,such
asprincipalcomponentanalysis,(PCA),multidimensionalscaling,
(MDS),andclusteranalysis.PCAandMDSproduceunstructured
scatterplotsandclusteringmethodsproducedistinct,unrelated
groups.Thesemethodologiessometimesobscuregeometricfeatures
thattopologicalmethodscapture.Thepurposeofthispaperisto
describeatopologicalmethodforanalyzingdataandtoillustrateits
utilityinseveralrealworldexamples.Thefirstexampleisontwo
differentgeneexpressionprofilingdatasetsonbreasttumors.Here
weshowthattheshapesofthebreastcancergeneexpressionnet-
worksallowustoidentifysubtlebutpotentiallybiologicallyrelevant
subgroups.Wehaveinnovatedfurtheronthetopologicalmethods

4,5

byimplementingtheideaofvisuallycomparingshapesacrossmul-
tiplenetworksinthebreastcancercase.Thesecondexampleisbased
on20yearsofvotingbehaviorofthemembersoftheUSHouseof
Representatives.Hereweshowthattheshapesofthenetworks
formedacrosstheyearstellushowcohesiveorfragmentedthevoting
behaviorisfortheUSHouseofRepresentatives.Thethirdexampleis
definingthecharacteristicsofNBAbasketballplayersviatheirper-
formancestatistics.Throughtheseadvancedimplementationsof
topologicalmethods,wehaveidentifiedfinerstratificationsofbreast
cancerpatients,votingpatternsoftheHouseofRepresentativesand
the13playingstylesoftheNBAplayers.

Results
Mathematicalunderpinningsoftopologicaldataanalysis(TDA).
TDAappliesthethreefundamentalconceptsintopologydiscussed
intheintroductiontostudylargesetsofpointsobtainedfromreal-
worldexperimentsorprocesses.Thecoreproblemaddressedby
TDAishowtousedatasampledfromanidealizedspaceorshape
toinferinformationaboutit.Figure1illustrateshowourparticular
topologicalmethodbasedonageneralizedReebgraph

6
,operateson

sampledpointsfromahumanhand.Themethodtakesthreeinputs:
adistancemetric,oneormorefilterfunctions(realvaluedquantities
associatedtothedatapoints),andtworesolutionparameters

(‘‘resolution’’and‘‘percentoverlap’’),andconstructsanetworkof
nodeswithedgesbetweenthem.Thelayoutsofthenetworksare
chosenusingaforcedirectedlayoutalgorithm.Assuch,the
coordinatesofanyindividualnodehavenoparticularmeaning.
Onlytheconnectionsbetweenthenodeshavemeaning.Hence,a
networkcanbefreelyrotatedandplacedindifferentpositionswith
noimpactontheinterpretationoftheresults.Thenodesrepresent
setsofdatapoints,andtwonodesareconnectedifandonlyiftheir
correspondingcollectionsofdatapointshaveapointincommon
(seetheMethodssection).Thefilterfunctionsarenotnecessarily
linearprojectionsonadatamatrix,althoughtheymaybe.Weoften
usefunctionsthatdependonlyonthedistancefunctionitself,suchas
theoutputofadensityestimatororameasureofcentrality.One
measureofcentralityweuselaterisL-infinitycentrality,which
assignstoeachpointthedistancetothepointmostdistantfromit.
WhenwedouselinearprojectionssuchasPCA,weobtaina
compressedandmorerefinedversionofthescatterplotproduced
bythePCAanalysis.Notethatinfigure1,wecanrepresentadataset
withthousandsofpoints(pointsinamesh)in2dimensionsbya
networkof13nodesand12edges.Thecompressionwillbeeven
morepronouncedinlargerdatasets.

Theconstructionofthenetworkinvolvesanumberofchoices
includingtheinputvariables.Itisusefultothinkofitasacamera,

Figure1|Theapproachasappliedtoadatasetinouranalysispipeline.
A)A3Dobject(hand)representedasapointcloud.B)Afiltervalueis
appliedtothepointcloudandtheobjectisnowcoloredbythevaluesofthe
filterfunction.C)Thedatasetisbinnedintooverlappinggroups.D)Each
binisclusteredandanetworkisbuilt.

www.nature.com/scientificreports

SCIENTIFICREPORTS|3:1236|DOI:10.1038/srep012362

Point cloud

specifiestheshape.Acoordinatefreeapproachallowstopologythe
abilitytocomparedataderivedfromdifferentplatforms(different
coordinatesystems).

Thesecondkeyideaisthattopologystudiesthepropertiesof
shapesthatareinvariantunder‘‘small’’deformations.Todescribe
smalldeformations,imagineaprintedletter‘‘A’’onarubbersheet,
andimaginethatthesheetisstretchedinsomedirections.Theletter
willdeform,butthekeyfeatures,thetwolegsandtheclosedtriangle
remain.Inamoremathematicalsetting,theinvarianceproperty
meansthattopologically,acircle,anellipse,andtheboundaryofa
hexagonareallidentical,becausebystretchinganddeformingone
canobtainanyofthesethreeshapesfromanyother.Theproperty
thatthesefiguresshareisthefactthattheyareallloops.Thisinherent
propertyoftopologyiswhatallowsittobefarlesssensitivetonoise
andthus,possesstheabilitytopickouttheshapeofanobjectdespite
countlessvariationsordeformations.

Thethirdkeyideawithintopologyisthatofcompressedrepresen-
tationsofshapes.ImaginetheperimeteroftheGreatSaltLakewithall
itsdetail.Oftenacoarserrepresentationofthelake,suchasapoly-
gon,ispreferable.Topologydealswithfiniterepresentationsof
shapescalledtriangulations,whichmeansidentifyingashapeusing
afinitecombinatorialobjectcalledasimplicialcomplexoranetwork.
Aprototypicalexampleforthiskindofrepresentationistheiden-
tificationofacircleashavingthesameshapeasahexagon.The
hexagoncanbedescribedusingonlyalistof6nodes(withoutany
placementinspace)and6edges,togetherwithdataindicatingwhich
nodesbelongtowhichedges.Thiscanberegardedasaformof
compression,wherethenumberofpointswentfrominfinitetofinite.
Someinformationislostinthiscompression(e.g.curvature),butthe
importantfeature,i.e.thepresenceofaloop,isretained.

TopologicalDataAnalysisissensitivetobothlargeandsmallscale
patternsthatoftenfailtobedetectedbyotheranalysismethods,such
asprincipalcomponentanalysis,(PCA),multidimensionalscaling,
(MDS),andclusteranalysis.PCAandMDSproduceunstructured
scatterplotsandclusteringmethodsproducedistinct,unrelated
groups.Thesemethodologiessometimesobscuregeometricfeatures
thattopologicalmethodscapture.Thepurposeofthispaperisto
describeatopologicalmethodforanalyzingdataandtoillustrateits
utilityinseveralrealworldexamples.Thefirstexampleisontwo
differentgeneexpressionprofilingdatasetsonbreasttumors.Here
weshowthattheshapesofthebreastcancergeneexpressionnet-
worksallowustoidentifysubtlebutpotentiallybiologicallyrelevant
subgroups.Wehaveinnovatedfurtheronthetopologicalmethods

4,5

byimplementingtheideaofvisuallycomparingshapesacrossmul-
tiplenetworksinthebreastcancercase.Thesecondexampleisbased
on20yearsofvotingbehaviorofthemembersoftheUSHouseof
Representatives.Hereweshowthattheshapesofthenetworks
formedacrosstheyearstellushowcohesiveorfragmentedthevoting
behaviorisfortheUSHouseofRepresentatives.Thethirdexampleis
definingthecharacteristicsofNBAbasketballplayersviatheirper-
formancestatistics.Throughtheseadvancedimplementationsof
topologicalmethods,wehaveidentifiedfinerstratificationsofbreast
cancerpatients,votingpatternsoftheHouseofRepresentativesand
the13playingstylesoftheNBAplayers.

Results
Mathematicalunderpinningsoftopologicaldataanalysis(TDA).
TDAappliesthethreefundamentalconceptsintopologydiscussed
intheintroductiontostudylargesetsofpointsobtainedfromreal-
worldexperimentsorprocesses.Thecoreproblemaddressedby
TDAishowtousedatasampledfromanidealizedspaceorshape
toinferinformationaboutit.Figure1illustrateshowourparticular
topologicalmethodbasedonageneralizedReebgraph

6
,operateson

sampledpointsfromahumanhand.Themethodtakesthreeinputs:
adistancemetric,oneormorefilterfunctions(realvaluedquantities
associatedtothedatapoints),andtworesolutionparameters

(‘‘resolution’’and‘‘percentoverlap’’),andconstructsanetworkof
nodeswithedgesbetweenthem.Thelayoutsofthenetworksare
chosenusingaforcedirectedlayoutalgorithm.Assuch,the
coordinatesofanyindividualnodehavenoparticularmeaning.
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importantfeature,i.e.thepresenceofaloop,isretained.

TopologicalDataAnalysisissensitivetobothlargeandsmallscale
patternsthatoftenfailtobedetectedbyotheranalysismethods,such
asprincipalcomponentanalysis,(PCA),multidimensionalscaling,
(MDS),andclusteranalysis.PCAandMDSproduceunstructured
scatterplotsandclusteringmethodsproducedistinct,unrelated
groups.Thesemethodologiessometimesobscuregeometricfeatures
thattopologicalmethodscapture.Thepurposeofthispaperisto
describeatopologicalmethodforanalyzingdataandtoillustrateits
utilityinseveralrealworldexamples.Thefirstexampleisontwo
differentgeneexpressionprofilingdatasetsonbreasttumors.Here
weshowthattheshapesofthebreastcancergeneexpressionnet-
worksallowustoidentifysubtlebutpotentiallybiologicallyrelevant
subgroups.Wehaveinnovatedfurtheronthetopologicalmethods

4,5

byimplementingtheideaofvisuallycomparingshapesacrossmul-
tiplenetworksinthebreastcancercase.Thesecondexampleisbased
on20yearsofvotingbehaviorofthemembersoftheUSHouseof
Representatives.Hereweshowthattheshapesofthenetworks
formedacrosstheyearstellushowcohesiveorfragmentedthevoting
behaviorisfortheUSHouseofRepresentatives.Thethirdexampleis
definingthecharacteristicsofNBAbasketballplayersviatheirper-
formancestatistics.Throughtheseadvancedimplementationsof
topologicalmethods,wehaveidentifiedfinerstratificationsofbreast
cancerpatients,votingpatternsoftheHouseofRepresentativesand
the13playingstylesoftheNBAplayers.

Results
Mathematicalunderpinningsoftopologicaldataanalysis(TDA).
TDAappliesthethreefundamentalconceptsintopologydiscussed
intheintroductiontostudylargesetsofpointsobtainedfromreal-
worldexperimentsorprocesses.Thecoreproblemaddressedby
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toinferinformationaboutit.Figure1illustrateshowourparticular
topologicalmethodbasedonageneralizedReebgraph

6
,operateson

sampledpointsfromahumanhand.Themethodtakesthreeinputs:
adistancemetric,oneormorefilterfunctions(realvaluedquantities
associatedtothedatapoints),andtworesolutionparameters

(‘‘resolution’’and‘‘percentoverlap’’),andconstructsanetworkof
nodeswithedgesbetweenthem.Thelayoutsofthenetworksare
chosenusingaforcedirectedlayoutalgorithm.Assuch,the
coordinatesofanyindividualnodehavenoparticularmeaning.
Onlytheconnectionsbetweenthenodeshavemeaning.Hence,a
networkcanbefreelyrotatedandplacedindifferentpositionswith
noimpactontheinterpretationoftheresults.Thenodesrepresent
setsofdatapoints,andtwonodesareconnectedifandonlyiftheir
correspondingcollectionsofdatapointshaveapointincommon
(seetheMethodssection).Thefilterfunctionsarenotnecessarily
linearprojectionsonadatamatrix,althoughtheymaybe.Weoften
usefunctionsthatdependonlyonthedistancefunctionitself,suchas
theoutputofadensityestimatororameasureofcentrality.One
measureofcentralityweuselaterisL-infinitycentrality,which
assignstoeachpointthedistancetothepointmostdistantfromit.
WhenwedouselinearprojectionssuchasPCA,weobtaina
compressedandmorerefinedversionofthescatterplotproduced
bythePCAanalysis.Notethatinfigure1,wecanrepresentadataset
withthousandsofpoints(pointsinamesh)in2dimensionsbya
networkof13nodesand12edges.Thecompressionwillbeeven
morepronouncedinlargerdatasets.

Theconstructionofthenetworkinvolvesanumberofchoices
includingtheinputvariables.Itisusefultothinkofitasacamera,

Figure1|Theapproachasappliedtoadatasetinouranalysispipeline.
A)A3Dobject(hand)representedasapointcloud.B)Afiltervalueis
appliedtothepointcloudandtheobjectisnowcoloredbythevaluesofthe
filterfunction.C)Thedatasetisbinnedintooverlappinggroups.D)Each
binisclusteredandanetworkisbuilt.
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Theorem 2.3 ([22]). For a finite persistence module C with field F coefficients,

(2.3) H∗(C; F ) ∼=
⊕

i

xti · F [x] ⊕

⎛

⎝

⊕

j

xrj · (F [x]/(xsj · F [x]))

⎞

⎠ .

This classification theorem has a natural interpretation. The free portions of
Equation (2.3) are in bijective correspondence with those homology generators
which come into existence at parameter ti and which persist for all future parame-
ter values. The torsional elements correspond to those homology generators which
appear at parameter rj and disappear at parameter rj + sj . At the chain level,
the Structure Theorem provides a birth-death pairing of generators of C (excepting
those that persist to infinity).

2.3. Barcodes. The parameter intervals arising from the basis for H∗(C; F ) in
Equation (2.3) inspire a visual snapshot of Hk(C; F ) in the form of a barcode. A
barcode is a graphical representation of Hk(C; F ) as a collection of horizontal line
segments in a plane whose horizontal axis corresponds to the parameter and whose
vertical axis represents an (arbitrary) ordering of homology generators. Figure 4
gives an example of barcode representations of the homology of the sampling of
points in an annulus from Figure 3 (illustrated in the case of a large number of
parameter values ϵi).

H0

H1

H2

ϵ

ϵ

ϵ

Figure 4. [bottom] An example of the barcodes for H∗(R) in the
example of Figure 3. [top] The rank of Hk(Rϵi

) equals the number
of intervals in the barcode for Hk(R) intersecting the (dashed) line
ϵ = ϵi.

PERSISTENT TOPOLOGY OF DATA 5

Figure 3. A sequence of Rips complexes for a point cloud data
set representing an annulus. Upon increasing ϵ, holes appear and
disappear. Which holes are real and which are noise?

high-dimensional data, algebraic topology works like a telescope, revealing objects
and features not visible to the naked eye. In what follows, we concentrate on
homology for its balance between ease of computation and topological resolution.
We assume a rudimentary knowledge of homology, as is to be found in, say, Chapter
2 of [15].

Despite being both computable and insightful, the homology of a complex asso-
ciated to a point cloud at a particular ϵ is insufficient: it is a mistake to ask which
value of ϵ is optimal. Nor does it suffice to know a simple ‘count’ of the number and
types of holes appearing at each parameter value ϵ. Betti numbers are not enough.
One requires a means of declaring which holes are essential and which can be safely
ignored. The standard topological constructs of homology and homotopy offer no
such slack in their strident rigidity: a hole is a hole no matter how fragile or fine.

2.1. Persistence. Persistence, as introduced by Edelsbrunner, Letscher, and Zomo-
rodian [12] and refined by Carlsson and Zomorodian [22], is a rigorous response to
this problem. Given a parameterized family of spaces, those topological features
which persist over a significant parameter range are to be considered as signal with
short-lived features as noise. For a concrete example, assume that R = (Ri)N

1 is
a sequence of Rips complexes associated to a fixed point cloud for an increasing
sequence of parameter values (ϵi)N

1 . There are natural inclusion maps
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ι

↪→ R2
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RϵCϵ

ϵ

Figure 2. A fixed set of points [upper left] can be completed to
a a Čech complex Cϵ [lower left] or to a Rips complex Rϵ [lower
right] based on a proximity parameter ϵ [upper right]. This Čech
complex has the homotopy type of the ϵ/2 cover (S1 ∨ S1 ∨ S1),
while the Rips complex has a wholly different homotopy type (S1∨
S2).

needed for a Čech complex. This virtue — that coarse proximity data on pairs of
nodes determines the Rips complex — is not without cost. The penalty for this
simplicity is that it is not immediately clear what is encoded in the homotopy type
of R. In general, it is neither a subcomplex of E

n nor does it necessarily behave
like an n-dimensional space at all (Figure 2).

1.4. Which ϵ? Converting a point cloud data set into a global complex (whether
Rips, Čech, or other) requires a choice of parameter ϵ. For ϵ sufficiently small,
the complex is a discrete set; for ϵ sufficiently large, the complex is a single high-
dimensional simplex. Is there an optimal choice for ϵ which best captures the
topology of the data set? Consider the point cloud data set and a sequence of Rips
complexes as illustrated in Figure 3. This point cloud is a sampling of points on
a planar annulus. Can this be deduced? From the figure, it certainly appears as
though an ideal choice of ϵ, if it exists, is rare: by the time ϵ is increased so as
to remove small holes from within the annulus, the large hole distinguishing the
annulus from the disk is filled in.

2. Algebraic topology for data

Algebraic topology offers a mature set of tools for counting and collating holes
and other topological features in spaces and maps between them. In the context of

Simplicial Complex

From data to simplices

Ghrist, R. (2008). Barcodes: The persistent topology of data. Bulletin-American Mathematical Society, 45(1), 61.
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the Structure Theorem provides a birth-death pairing of generators of C (excepting
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2.3. Barcodes. The parameter intervals arising from the basis for H∗(C; F ) in
Equation (2.3) inspire a visual snapshot of Hk(C; F ) in the form of a barcode. A
barcode is a graphical representation of Hk(C; F ) as a collection of horizontal line
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two groups becomes evident when we look at the distributions
for the edge weights (figure 5a). In particular, the weights of
H

p
pla display a cut-off for large weights, whereas the weights

of H
p
psi have a broader tail (Kolmogorov–Smirnov statistics:

0.06, p-value , 10220; figure 5a). Interestingly, the frequency
scaffold weights probability density functions cannot be distin-
guished from each other figure 5a (inset) (Kolmogorov–
Smirnov statistics: 0.008, p-value ¼ 0.72). Taken together,
these two results imply that while edges statistically belong to
the same number of cycles, in the psilocybin scaffold, there
exist very strong, persistent links.

The difference between the two sets of homological scaf-
folds for the two groups becomes even more evident when
one compares the weights between the frequency and

persistence scaffolds of the same group. Figure 5b is a scatter
plot of between the weights of edges from both scaffolds for
the two groups. The placebo group has a linear relationship
between the two quantities meaning that edges that are per-
sistent also belongs to many cycles (R2 ¼ 0.95, slope ¼ 0.23).
Although the linear relationship is still a reasonable fit for
the psilocybin group (R2 ¼ 0.9, slope ¼ 0.3), the data in this
case display a larger dispersion. In particular, it shows that
edges in H

f ,p
psi can be much more persistent/longer-lived

than in H
f ,p

pla but still appear in the same number of cycles,
i.e. the frequency of a link is not predictive of its persistence
or simply put: some connections are much more persistent in
the psychedelic state. Moreover, the slopes of linear fits of the
two clouds are statistically different ( p-value , 10220, npla ¼
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Figure 3. Probability densities for the H1 generators. Panel (a) reports the (log-)probability density for the placebo group, whereas panel (b) refers to the psilocybin
group. The placebo displays a uniform broad distribution of values for the births – deaths of H1 generators, whereas the plot for the psilocybin condition is very
peaked at small values with a fatter tail. These heterogeneities are evident also in the persistence distribution and find explanation in the different functional
integration schemes in placebo and drugged brains. (Online version in colour.)

0

0.01

0.02

P
(p

)

0.03

0.04

0.05

10–5

0.0001

P
(b

)

0.001

0.01

placebo
psilo

0.1

(a) (b)

0.2 0.4 0.6
persistence p

0.8 1.0 0 0.2 0.4 0.6
birth b

0.8 1.0

Figure 4. Comparison of persistence p and birth b distributions. Panel (a) reports the H1 generators’ persistence distributions for the placebo group (blue line) and
psilocybin group (red line). Panel (b) reports the distributions of births with the same colour scheme. It is very easy to see that the generators in the psilocybin
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than fixed structural ones as may be the case for acquired
synaesthesia [52]. Broadly consistent with this, it has been
reported that subjects under the influence of psilocybin
have objectively worse colour perception performance
despite subjectively intensified colour experience [53].

To summarize, we presented a new method to analyse
fully connected, weighted and signed networks and applied
it to a unique fMRI dataset of subjects under the influence
of mushrooms. We find that the psychedelic state is associ-
ated with a less constrained and more intercommunicative
mode of brain function, which is consistent with descriptions
of the nature of consciousness in the psychedelic state.

7. Methods
7.1. Dataset
A pharmacological MRI dataset of 15 healthy controls was used
for a proof-of-principle test of the methodology [54]. Each subject
was scanned on two separate occasions, 14 days apart. Each scan
consisted of a structural MRI image (T1-weighted), followed by a
12 min eyes-close resting-state blood oxygen-level-dependent
(BOLD) fMRI scan which lasted for 12 min. Placebo (10 ml
saline, intravenous injection) was given on one occasion and psi-
locybin (2 mg dissolved in 10 ml saline) on the other. Injections
were given manually by a study doctor situated within the scan-
ning suite. Injections began exactly 6 min after the start of the
12-min scans, and continued for 60 s.

7.1.1. Scanning parameters
The BOLD fMRI data were acquired using standard gradient-echo
EPI sequences, reported in detail in reference [54]. The volume
repetition time was 3000 ms, resulting in a total of 240 volumes
acquired during each 12 min resting-state scan (120 pre- and 120
post-injection of placebo/psilocybin).

7.1.2. Image pre-processing
fMRI images were corrected for subject motion within individual
resting-state acquisitions, by registering all volumes of the

functional data to the middle volume of the acquisition using
the FMRIB linear registration motion correction tool, generating
a six-dimension parameter time course [55]. Recent work demon-
strates that the six parameter motion model is insufficient to
correct for motion-induced artefact within functional data,
instead a Volterra expansion of these parameters to form a 24
parameter model is favoured as a trade-off between artefact cor-
rection and lost degrees of freedom as a result of regressing
motion away from functional time courses [56]. fMRI data
were pre-processed according to standard protocols using a
high-pass filter with a cut-off of 300 s.

Structural MRI images were segmented into n ¼ 194 cortical
and subcortical regions, including white matter cerebrospinal
fluid (CSF) compartments, using FREESURFER (http://surfer.nmr.
mgh.harvard.edu/), according to the Destrieux anatomical atlas
[57]. In order to extract mean-functional time courses from
the BOLD fMRI, segmented T1 images were registered to the
middle volume of the motion-corrected fMRI data, using bound-
ary-based registration [58], once in functional space mean
time-courses were extracted for each of the n ¼ 194 regions in
native fMRI space.

7.1.3. Functional connectivity
For each of the 194 regions, alongside the 24 parameter motion
model time courses, partial correlations were calculated between
all couples of time courses (i,j ), non-neural time courses (CSF,
white matter and motion) were discarded from the resulting
functional connectivity matrices, resulting in a 169 region corti-
cal/subcortical functional connectivity corrected for motion
and additional non-neural signals (white matter/CSF).

7.2. Persistent homology computation
For each subject in the two groups, we have a set of persistence
diagrams relative to the persistent homology groups Hn. In this
paper, we use the H1 persistence diagrams of each group to
construct the corresponding persistence probability densities
for H1 cycles.

Filtrations were obtained from the raw partial-correlation
matrices through the PYTHON package Holes and fed to javaplex
[46] via a Jython subroutine in order to extract the persistence

(a) (b)

Figure 6. Simplified visualization of the persistence homological scaffolds. The persistence homological scaffolds Hp
pla (a) and Hp

psi (b) are shown for comparison.
For ease of visualization, only the links heavier than 80 (the weight at which the distributions in figure 5a bifurcate) are shown. This value is slightly smaller than
the bifurcation point of the weights distributions in figure 5a. In both networks, colours represent communities obtained by modularity [49] optimization on the
placebo persistence scaffold using the Louvain method [50] and are used to show the departure of the psilocybin connectivity structure from the placebo baseline.
The width of the links is proportional to their weight and the size of the nodes is proportional to their strength. Note that the proportion of heavy links between
communities is much higher (and very different) in the psilocybin group, suggesting greater integration. A labelled version of the two scaffolds is available as GEXF
graph files as the electronic supplementary material. (Online version in colour.)
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• Works for the short windows

• Sparse representation

• Ok, but why?

Scaffold fingerprinting
Summing up
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Figure 3. Redundant and synergistic hypergraph community structure. A-B. Surface plots of the two communities
structures: on the left is the redundant structure and on the right is the synergistic structure. We can see that both patterns
are largely symmetrical for both information-sharing modes, although the synergistic structure has two large, lateralized
communities. C-D. The co-classification matrices for redundant structure (left) and the synergistic structure (right). The
higher the value of a pair, the more frequently the hypergraph modularity maximization [33] assigns those two regions to the
same hyper-community. The yellow squares indicate the seven canonical Yeo functional networks [34], and we can see that the
higher-order redundant structure matches the bivariate Yeo systems well (despite consisting of information shared redundantly
across three nodes). In contrast, the synergistic structure largely fails to match the canonical network structure at all. E.
For each of the 95 subjects and for each of the 1000 permutation nulls used to significance test the NMI between subject-level
community structure and the master level structure, we computed the log-ratio of the empirical NMI to the null NMI. For
redundancy, there was not a single null, over any subject, that was greater than the associated empirical NMI. For the case of
the synergy, only 0.6% of nulls were greater than their associated empirical NMI.

degree of between-community integration. We selected
all those triads that had a greater synergistic structure
than any of the one million maximum entropy null triads
(see Materials and Methods), which yielded a set of 3,746
unique triads. From these, we constructed an unweighted
hypergraph with 200 nodes and 3,746 hyperedges (cast-
ing each triad as a hyperedge incident on three nodes).
We then performed 1,000 trials of the hypergraph cluster-
ing algorithm proposed by Kumar et al., [33], from which
we built a consensus matrix that tracked how frequently
two brain regions Xi and Xj were assigned to the same

hyper-community. We repeated the process for the 3,746
maximally redundant triads to create two partitions: a
synergistic structure and a redundant structure.

In Figure 3 we show surface plots of the resulting com-
munities computed from the concatenated time series
comprising all ninety-five subjects and all 4 runs. The
redundant structure (left) is very similar to the canoni-
cal seven Yeo systems [34]: we can see a well-developed
DMN (orange), a distinct visual system (sky blue), a
somato-motor strip (violet), and a fronto-parietal net-
work (dark blue). In contrast, when considering the syn-

Varley, Thomas F., et al. arXiv preprint arXiv:2301.05307 (2023).

ARTICLESNATURE NEUROSCIENCE

The distinct subnetwork affiliations and cytoarchitectonic pro-
files further suggest that redundant and synergistic interactions 
may be involved with radically different cognitive domains. To 
empirically validate this hypothesis, we performed a term-based 
meta-analysis using NeuroSynth, which is widely used to character-
ize macroscale brain patterns in terms of cognitive relevance25–28. 
NeuroSynth enables automated probabilistic mappings between 
broad cognitive domains and neural patterns, by synthesizing thou-
sands of published functional MRI (fMRI) studies28. We used 24 topic  

terms used by previous studies25,27, ranging from lower sensorimo-
tor functions (for example, eye movement, motion, visual and 
auditory perception) to higher cognitive functions (for example, 
attention, working memory, social and numerical cognition). The 
redundancy-to-synergy gradient identified in terms of regional 
rank differences was then related to these 24 terms25,27.

Supporting the inference from neuroanatomy to cognition, our 
results reveal that the regional gradient from redundancy to syn-
ergy corresponds to a gradient from lower sensorimotor functions 
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Fig. 1 | Synergistic and redundant networks exhibit distinct anatomical and cognitive profiles. a,b, Group-average matrices display the redundant (a) and 
synergistic (b) interactions between each pair of brain regions (note that color bars do not include entries on the diagonal). Brain plots show the cortical 
distribution of the strongest redundant (blue) and synergistic (red) connections (thresholded to retain the top 5% of connections, for display purposes 
only). SOM, somatomotor network; VIS, visual network; SAL, salience/ventral attention network; DAN, dorsal attention network; LIM, limbic network; SUB, 
subcortical network. c, participant-specific Pearson correlation values of synergy and redundancy matrices with the matrix of traditional FC (redundancy: 
M!=!0.62, s.d.!=!0.24; synergy: M!=!−0.29, s.d.!=!0.16; t(99)!=!24.06, P!<!0.001, Hedges’s g!=!4.39, effect size confidence interval (CI): (3.88, 5.11), from 
paired-sample non-parametric permutation t-test (two-sided); n!=!100 unrelated HCP participants). Note that the relationships of redundancy and synergy 
with traditional FC are not equal: the absolute value of the correlation was significantly stronger for redundancy than for synergy (redundancy: M!=!0.62, 
s.d.!=!0.24; synergy: M!=!0.29, s.d.!=!0.16; t(99)!=!20.35, P!<!0.001, Hedges’s g!=!1.65, effect size CI: (1.36, 1.92), from paired-sample non-parametric 
permutation t-test (two-sided); n!=!100 unrelated HCP participants). In the violin plots, each colored circle represents one participant; white circle, 
median; blue line, mean; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; ***P!<!0.001. d, Brain surface projections of regional 
redundancy-to-synergy gradient scores, based on the respective ranks. These ranks exhibited an inverse correlation (Spearman’s ρ!=!−0.40, P!<!0.001; 
Extended Data Fig. 1). e, NeuroSynth term-based meta-analysis, relating the distribution of redundancy-to-synergy gradient across the brain to a cognitive 
gradient of cognitive domains, from lower-level sensorimotor processing to higher-level cognitive tasks. These results are robust to the use of different 
parcellations (cortical only; having lower or higher number of nodes; and obtained from anatomical rather than functional considerations; Extended Data 
Fig. 2a,b). Likewise, although these results were obtained after deconvolving the hemodynamic response function from the BOLD signals to account for 
regional variations (Methods), analogous results are also obtained when this step is omitted, or if synergy and redundancy are computed from discretized 
rather than continuous data (Extended Data Fig. 2c,d).
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The distinct subnetwork affiliations and cytoarchitectonic pro-
files further suggest that redundant and synergistic interactions 
may be involved with radically different cognitive domains. To 
empirically validate this hypothesis, we performed a term-based 
meta-analysis using NeuroSynth, which is widely used to character-
ize macroscale brain patterns in terms of cognitive relevance25–28. 
NeuroSynth enables automated probabilistic mappings between 
broad cognitive domains and neural patterns, by synthesizing thou-
sands of published functional MRI (fMRI) studies28. We used 24 topic  

terms used by previous studies25,27, ranging from lower sensorimo-
tor functions (for example, eye movement, motion, visual and 
auditory perception) to higher cognitive functions (for example, 
attention, working memory, social and numerical cognition). The 
redundancy-to-synergy gradient identified in terms of regional 
rank differences was then related to these 24 terms25,27.

Supporting the inference from neuroanatomy to cognition, our 
results reveal that the regional gradient from redundancy to syn-
ergy corresponds to a gradient from lower sensorimotor functions 
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Fig. 1 | Synergistic and redundant networks exhibit distinct anatomical and cognitive profiles. a,b, Group-average matrices display the redundant (a) and 
synergistic (b) interactions between each pair of brain regions (note that color bars do not include entries on the diagonal). Brain plots show the cortical 
distribution of the strongest redundant (blue) and synergistic (red) connections (thresholded to retain the top 5% of connections, for display purposes 
only). SOM, somatomotor network; VIS, visual network; SAL, salience/ventral attention network; DAN, dorsal attention network; LIM, limbic network; SUB, 
subcortical network. c, participant-specific Pearson correlation values of synergy and redundancy matrices with the matrix of traditional FC (redundancy: 
M!=!0.62, s.d.!=!0.24; synergy: M!=!−0.29, s.d.!=!0.16; t(99)!=!24.06, P!<!0.001, Hedges’s g!=!4.39, effect size confidence interval (CI): (3.88, 5.11), from 
paired-sample non-parametric permutation t-test (two-sided); n!=!100 unrelated HCP participants). Note that the relationships of redundancy and synergy 
with traditional FC are not equal: the absolute value of the correlation was significantly stronger for redundancy than for synergy (redundancy: M!=!0.62, 
s.d.!=!0.24; synergy: M!=!0.29, s.d.!=!0.16; t(99)!=!20.35, P!<!0.001, Hedges’s g!=!1.65, effect size CI: (1.36, 1.92), from paired-sample non-parametric 
permutation t-test (two-sided); n!=!100 unrelated HCP participants). In the violin plots, each colored circle represents one participant; white circle, 
median; blue line, mean; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; ***P!<!0.001. d, Brain surface projections of regional 
redundancy-to-synergy gradient scores, based on the respective ranks. These ranks exhibited an inverse correlation (Spearman’s ρ!=!−0.40, P!<!0.001; 
Extended Data Fig. 1). e, NeuroSynth term-based meta-analysis, relating the distribution of redundancy-to-synergy gradient across the brain to a cognitive 
gradient of cognitive domains, from lower-level sensorimotor processing to higher-level cognitive tasks. These results are robust to the use of different 
parcellations (cortical only; having lower or higher number of nodes; and obtained from anatomical rather than functional considerations; Extended Data 
Fig. 2a,b). Likewise, although these results were obtained after deconvolving the hemodynamic response function from the BOLD signals to account for 
regional variations (Methods), analogous results are also obtained when this step is omitted, or if synergy and redundancy are computed from discretized 
rather than continuous data (Extended Data Fig. 2c,d).

NATURE NEUROSCIENCE | VOL 25 | JUNE 2022 | 771–782 | www.nature.com/natureneuroscience 773



Information theory

Mediano, P., et al. (2019)

Synergy Redundancy

Poetto, Saggar, Battaglia, Vaccarino, Rabuffo, Petri in prep

Synergy and redundancy of scaffold edges

Synergy and redundancy of scaffold edges

Topo+Info brain fingerprinting



• Topological information (simplification) 
discriminates well across individuals

• Stronger effect for higher-order timeseries

• Global markers (Mapper) powerful

• no relation to the actual synergy/
redundancy patterns 

• Local markers (scaffold) even more powerful. 

• Related to local HOI info-theory, but 
not sufficient to explain

Topo+Info brain fingerprinting
Summing up

• Time-resolved (a la Santoro, Andrea, et al. 
Nat. Phys. (2023))

• Distinguish by functional subnetwork

• Generative models of target topology

To do

What about individual identification?

Santoro, Petri, Battiston, Amico, out soon! 
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Network science helps us to better understand the evolu-
tion of the highly interconnected world in which we live1. 
It sheds light on myriad systems—everything from how 

rumours spread in a social network to how large ecosystems sta-
bilize in spite of competing interactions between species. A key 
feature shared by such systems is that they are characterized by a 
complex set of interactions that govern their emergent dynamics2–4. 
In recent years, the architecture of social networks, ecosystems and 
the human brain have all been modelled as graphs, with collections 
of nodes describing the units of the systems—humans, animals 
or neurons—and edges encoding their pairwise interactions. This 
approach has led to the discovery that a heavy-tailed distribution 
in the number of contacts within a population causes the epidemic 
threshold to vanish, putting everyone at risk during a pandemic5,6. 
It has inspired the realizations that small-world networks and clus-
tering promote synchronization7 and that efficient communication 
structures tend to reach rapid and diffused consensus, but are also 
prone to the spreading of misinformation8.

Graphs, however convenient, can only provide a limited descrip-
tion of reality. They are inherently constrained to represent systems 
with pairwise interactions only. Yet, in many biological, physical 
and social systems, units may interact in larger groups, and such 
interactions cannot always be decomposed as a linear combination 
of dyadic couplings9 (Fig. 1). For example, evidence from neural 
systems shows that higher-order effects are present and important 
both statistically10–12 and topologically13,14. However, there is also 

evidence to suggest that such higher-order signatures might in some 
cases be redundant, and may be fully describable in terms of pair-
wise interactions15,16. In ecological systems, evidence clearly shows 
the existence of complex many-body interactions between multiple 
species17–19, although the effects induced by their interaction pat-
terns have only recently been investigated formally20. Other exam-
ples include metabolic and genetic systems21, social coordination22 
and group formation23.

The idea of higher-order interactions is well-known in the set-
ting of many-body physics, for example in strong interactions24,25 
or van der Waals interactions26, as well as in statistical mechan-
ics27. However, in all these cases, representations of higher-order 
interactions are simple in the sense that they do not contribute 
to the emerging complexity of the problem. In complex systems, 
typically described as networks, the story is different, and in many 
cases these interactions must be taken into account using more 
advanced mathematical structures, such as hypergraphs and sim-
plicial complexes9. Several investigations have already shown that 
the presence of higher-order interactions may substantially impact 
the dynamics on networked systems, from diffusion28,29 and syn-
chronization30,31 to social32–34 and evolutionary processes35, possibly 
leading to the emergence of abrupt (explosive) transitions between 
states. Furthermore, although most research in complex systems 
focuses on the dynamical evolution of the states of the nodes, it 
is natural to consider that higher-order structures (described by 
hyperedges) could themselves possess a dynamical state, leading to 

The physics of higher-order interactions in 
complex systems
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Complex networks have become the main paradigm for modelling the dynamics of interacting systems. However, networks are 
intrinsically limited to describing pairwise interactions, whereas real-world systems are often characterized by higher-order 
interactions involving groups of three or more units. Higher-order structures, such as hypergraphs and simplicial complexes, 
are therefore a better tool to map the real organization of many social, biological and man-made systems. Here, we highlight 
recent evidence of collective behaviours induced by higher-order interactions, and we outline three key challenges for the phys-
ics of higher-order systems.
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