
Machine Unlearning:
Definitions, Methods, and
Auditing for Trustworthy AI

Eleni Triantafillou, Fabian Pedregosa, Jamie Hayes, Peter Kairouz, Isabelle
Guyon, Meghdad Kurmanji, Gintare Karolina Dziugaite, Peter Triantafillou,
Kairan Zhao, Lisheng Sun Hosoya, Julio C. S. Jacques Junior, Vincent Dumoulin,
Ioannis Mitliagkas, Sergio Escalera and Jun Wan.

Fabian Pedregosa

Dangers of Unintended Memorization

AI models are trained on huge collections of
data, usually scraped from the internet.

Carlini, Nicholas, et al. "Extracting training data from large language models." 2021.

For example, language models can be prompted
to accurately generates

● Work address
● Email
● etc.

Memorization is also an issue for text-to-image models

https://arxiv.org/pdf/2301.13188.pdf

https://arxiv.org/pdf/2301.13188.pdf

Dangers of Unintended Memorization

Obvious problem if trained with private
data

https://xkcd.com/2169

But not only

Important to grant users control over their
data (even if publicly available)

https://xkcd.com/2169

Practical case

In 1998, a Spaniard named Mario Costeja
Gonzalez had hit financial difficulties.

To solve them, a property of his was put up for
auction - the details of which were covered in a
newspaper, which subsequently went online. Mr
Gonzalez is keen to move on.

Issue: Whenever you search for his name, news
about the auction still features prominently. He
argued that this damaged his reputation, and
should be removed from Google's search results.

Ruling Google Spain v AEPD and Mario Costeja González

The Court of Justice of the European
Union ruled that an Internet search engine
operator is responsible for the
processing that it carries out of personal
data which appear on web pages
published by third parties, upholding a
right of erasure

https://reportcontent.google.com/forms/rtbf

https://reportcontent.google.com/forms/rtbf

Regulations already in place

“data subject have the right to
obtain from the controller the
erasure of personal data
concerning him or her"

General Data Protection
Regulation (GDPR), Adopted
March 2014

"You may request that
businesses delete personal
information they collected from
you and to tell their service
providers to do the same."

California Consumer Privacy Act,
Adopted June 2018

CCPA

How do we delete information?

✂ Easy if information in database

But what if that information is inside a ML
model ? 🤔

Legal precedent

https://www.ftc.gov/news-events/news/press-releases/2021/01/california-company-settles-ftc-allegations-it-deceived-consumers-about-use-facial-recognition-photo

https://www.ftc.gov/news-events/news/press-releases/2021/01/california-company-settles-ftc-allegations-it-deceived-consumers-about-use-facial-recognition-photo

How do we delete information?

Ideal (yet expensive) solution

● Remove problematic samples from
train set

● Retrain

The problem of Machine Unlearning

Design fast algorithms that produce
models that are indistinguishable
from the models that would have
arisen from retraining.

Machine Unlearning

1
Photo credits: https://blog.dropbox.com/topics/work-culture/to-escape-entrenched-views--we-need-to-get-better-at--unlearning

https://blog.dropbox.com/topics/work-culture/to-escape-entrenched-views--we-need-to-get-better-at--unlearning

Unlearning Pipeline
Users requesting deletion

Source: https://blog.research.google/2023/06/announcing-first-machine-unlearning.html

Gold Standard

How close are these two models?

https://blog.research.google/2023/06/announcing-first-machine-unlearning.html

 || - ||

Obvious solution

Distance between "gold standard" and unlearned
model.

"Gold-standard" is not a
single model. Different
solutions are valid due to:

● Stochasticity

● Non-convexity

Unlearning as hypothesis testing

auditor

hide which one you picked

● Unlearning algorithm is good if the auditor can't distinguish them

● Best unlearning algorithm makes both indistinguishable

Formal definition of 𝟄-unlearning

https://arxiv.org/pdf/1911.03030.pdf

x ∈ D is a sample in forget set

● A(D\x) =

● U(A(D), D, x) =

https://arxiv.org/pdf/1911.03030.pdf

Relationship with 𝟄-differential privacy

𝟄-unlearning
For all datasets D1 = D and D2 = D\x that
differ on a single element we have

𝟄-differential privacy

● 𝟄-Differential privacy implies 𝟄-certified removal with U = identity.

● Differential privacy is a stronger notion of privacy
○ Can't memorize any individual element

Won't differential privacy solve all our problems?

Yes but

● DP-SGD sacrifices utility

● We hope unlearning has a better
trade-off

○ Provably the case (Sekhari et al. 2021)

De, Soham, et al. "Unlocking high-accuracy differentially private image classification through scale." (2022).

Sekhari, Ayush, et al. "Remember what you want to forget: Algorithms for machine unlearning." (2021)

SOTA (~95%)

 ✅ Strong unlearning guarantees

 ❌ Applies to strongly convex linear models
○ Exact for least squares
○ Iterative for logistic regression

 ❌ Cost solving a linear system

 ✅ Proves "strict separation between DP
and machine unlearning"

 ❌ Applicable to convex losses

 ❌ Algorithm based on performing
Hessian inversion + noise injection

https://arxiv.org/abs/2103.03279

https://arxiv.org/abs/2103.03279

 ✅ Scalable: ~GD on retain set + noise

 ❌ Guarantees only applicable to convex
objectives

https://arxiv.org/abs/2007.02923

https://arxiv.org/abs/2007.02923

Need for unlearning algorithm

 ✅ Scalable

 ✅ Applicable to non-convex
objectives

 ✅ Doesn't sacrifice (too much) utility

Existing approaches
 ❌ Apply to convex objectives
 and/or

 ❌ Computationally costly

The 2023
NeurIPS
Unlearning
Challenge 2

● Accepted proposal to organize
the first unlearning competition

● Decided on a dataset:
○ CASIA-SURF
○ Faces annotated with

age groups

Zhang, Shifeng, et al. "Casia-surf: A large-scale multi-modal benchmark for face anti-spoofing." IEEE Transactions on Biometrics,
Behavior, and Identity Science 2.2 (2020). https://arxiv.org/abs/1908.10654

https://arxiv.org/abs/1908.10654

Evaluating unlearning

Forgetting qualityUtilityEfficiency

Time (seconds)
FLOPs

Absolute or relative to
retrain

Accuracy of the model How well have we
forgotten?

Threshold: entries that take more
than 10% of total training time are
eliminated

 Accuracy on retain/test set 😱😱😱😱⚙ ⚙ ⚙

https://emojipedia.org/gear
https://emojipedia.org/gear
https://emojipedia.org/gear

Evaluating unlearning

Goal: evaluate 𝟄 in

● A(D\x) =
 training without forget set

● U(A(D), D, x) =

 unlearning algorithmTypically bounding 𝟄 is a theoretical contribution

● Can we ask participants to provide such a bound?

● How can we evaluate soundness of the this derivation?

Monte carlo methods

Estimating complex
probabilities can
sometimes be achieved
by running a large number
of experiments

https://en.wikipedia.org/wiki/Monte_Carlo_method

https://en.wikipedia.org/wiki/Monte_Carlo_method

Unlearning as hypothesis testing

auditor

hide which one you picked

Repeat O(1000) times

Unlearning as hypothesis testing

auditor

hide which one you picked

��
ML-based
decision

(Membership
inference
attack)

Repeat O(1000) times

Inspiration from the differential privacy literature

Simplifications for efficiency

● We estimate the distributions of retrained / unlearned outputs for each example
● Instead of considering weight space, we consider distributions of (scalar) outputs when

receiving ‘forget examples’ as input
● We run many ‘attacks’, compute accuracy of and keep the worse (largest)

After having computed each
example’s , we aggregate
them via a bucketing procedure

Evaluating unlearning

Forgetting qualityUtilityEfficiency

Time (seconds)
FLOPs

Absolute or relative to
retrain

Accuracy of the model How well have we
forgotten?

Threshold: entries that take more
than 10% of total training time are
eliminated

 Accuracy on
retain/test set Monte-Carlo approach⚙ x x

https://emojipedia.org/gear

Unusual competition

 Standard Kaggle competition
○ Download dataset
○ Submit labels

 This one was very different.
Participants had

○ No access to dataset
■ Can't run locally

○ No implementation to
evaluation (only rough
description)
■ Avoid overfitting to metric

We launched on September 2023

3-months after schedule

● Baseline of "fine-tuning" (training for few
epochs on "retain set")

●

Nightmare scenarios

● Problem is too hard: nobody does better
than baseline (happened to others)

● Participants find a "backdoor" in the
evaluation, manage to win without really
unlearning

A look at the
top
submissions 3

In numbers

5,161 registrations

1,338 participants from 72
countries.
For 500 (including 44 in
the top 100!), this was
their first competition

1,121 teams

1,923 submissions

Leaderboard: 40% scored above baseline 🤯

https://emojipedia.org/exploding-head

Top submissions

6th place solution - Algorithmic Amnesiacs

1. Reset first and last layer of the original model.
2. Warm-up phase employing knowledge distillation
3. Fine-tuning phase.

6th place solution - Algorithmic Amnesiacs

Reset first and last layers:

● First layer significantly
influences the rest of the model
layers and the last layer
determines the model’s final
output distribution.

● On CIFAR-10: these two layers
exhibited the most negative
cosine similarity between model
weights trained on the full
training set and models trained
from scratch on a smaller
subset (i.e., the retain set).

6th place solution - Algorithmic Amnesiacs

Warm-up phase

Minimize KL divergence between the
outputs of the original pre-trained
model (teacher) and the reinitialized
model (student) on the validation
set.

6th place solution - Algorithmic Amnesiacs

Fine-tuning using 3 losses

Cross-entropy for model's
accuracy using hard labels on
retain set.

Soft cross-entropy for predictions
of the student model with soft
labels from the teacher model.

KL divergence combined with the
soft cross-entropy facilitates rapid
knowledge transfer and broader
information capture.

Common trends

All submissions followed a strategy of two stages: Forget and fine-tuning

Fine-tuning

7th: standard fine-tuning

6th: knowledge distillation + fine-tuning + uses 3 losses (the
sum)

5th: pseudo-labels

4th: regularize with entropy

2nd: standard fine-tuning but with a very small learning rate
(1/10th of original)

1st: standard fine-tuning

Optimization-based forgetting (lack of a better name …)

● 4th: prune weights based on L1 norm
● 2nd: difference of gradients
● 1st: minimize KL-divergence between output logits and a

uniform pseudo label on forget set. Also, there's a "forget
round: Maximize dissimilarity between logits of forget and
retain set"

Forgetting

Random reinitialization / untargeted

● 8th: model parameters are stochastically selected and
re-initialized.

● 7th: reset last layer + add noise to N=9 (randomly
chosen) layers

● 6th: reset first and last layer
● 5th: permute weights

4th place solution - Sebastian Oleszko

1. Re-initializing/pruning 99% of parameters based on L1-norm (Unstructured)
○ Weights: Pytorch default initialization
○ Biases: Set to zero (prune)

2. Fine-tune on retain dataset
○ Regularize using entropy
○ Cross entropy class weights as

Cross-entropy MSE of entropy

Initial weights

4th place solution - Sebastian Oleszko

● CIFAR-10 experiment
● Impact of most important hyperparameters: Learning rate/epochs and pruning percentage
● Effect of including entropy regularization
● Tuning on public submission scores

Increase Pruning %

Conclusion

🔐Machine Unlearning is essential to safely
deploy AI systems at scale

📚 There are rigorous definitions of machine
unlearning

💻 Theoretical notions, but which can be
approximated with computational methods

 🏆 Organizing a machine learning challenge is
hard – but also fun!

8th place solution - Team Forget

(1) Forgetting phase: model parameters
are stochastically selected and
re-initialized.
 - FC, Projection-shortcut layers are
excluded from the selection pool.

(2) Remembering phase: knowledge
preserving loss is calculated between
the original model and the target
unlearning model.
 - Knowledge Preserving Loss:

 - Gaussian noise is added to the
image as data augmentation.
 - It reminds the target model about
the retain set.

(3) Forgetting phase and Remembering
phase are repeated for n cycles to
enhance unlearning performance.

8th place solution - Team Forget

(a) CE (b) MSE

Forget Set

Retain Set

Figure. Comparison of logit distributions between CE loss and MSE loss

- Histograms of logits from retrained model and
unlearned models are visualized.

- This observation is acquired from local
experiments on CIFAR-10.

- MSE loss makes closer distributions than CE
loss for both forget set and retain set.

8th place solution - Team Forget

Table 1. Comparison between different data augmentation techniques

Table 2. Comparison between different sigma of gaussian noise

Table 3. Comparison between different loss functions Table 5. Final submission score compared with other unlearning methods

- Gaussian Noise (σ=0.1) is the best data augmentation
compared with other data augmentation techniques.

- Compared with CE loss and L1 loss, MSE loss
demonstrates the best score.

- Additionally, increasing the cycles highly improves the
performance.

- From these observations, we build the final submission.

Table 4. Effect of cycles

7th place solution - Jiaxi Sun

Solution that only makes use of retain set

1. Reset parameters of last layer

2. Randomly selecting N=9 layers from the network and add noise
a. Adding noise helps the network 'forget' the information it has learned, and the

randomness of the layer selection contributes to enhancing the model's diversity.

3. Fine-tune all network layers

Summary

Our solution is the ensemble of two approaches:
　(1) Retraining from transposed weights
　(2) Fine-tuning with pseudo-labels.

Our solution is built upon two distinctive approaches, contributing to the stability of our
solution in the private LB.

(1) Retraining from transposed weights (2) Fine-tune with pseudo-labels Public LB Private LB

512 models 0 models 0.0720386947 -

0 models 512 models 0.0707241647 -

246 models 266 models - 0.0785184178

266 models 246 models - 0.0756313425

5th place solution - toshi_k & marvelworld

5th place solution - toshi_k & marvelworld

(1) Retraining from transposed weights

● This part retrains the model using a modified version of the original model.
● In this modification, all weights in Conv2D are transposed. This process helps in

forgetting samples in the forget-set, enabling the reuse of valuable features from
the original model.

The modification is carried out simply like this.

Block A 7x7 Conv 64

3x3 Conv 64

3x3 Conv 64

Block B

w1 w2 w3

w4 w5 w6

w7 w8 w9

ResNet18
w9 w7 w3

w8 w5 w2

w7 w4 w1

Transpose !

All weights in
Conv2D are
transposed

(2) Fine-tuning with pseudo-labels

Figure 1: Inference shifts
between the pretrained model
and the fine-tuned model,
showcasing significant shifts in
the incorrect direction.

Figure 2: Inference results of the
scratch model. Triangle-up marker
indicates high confidence but they
are making incorrect inferences.

5th place solution - toshi_k & marvelworld

● This part reproduces behavior (errors) on the forget data with pseudo-labels
from two functions.

4th place solution - Sebastian Oleszko

Entropy-based regularization
Helps to achieve a more similar prediction distribution/confidence.

Unlearning through pruning/re-initialization
Effective as unlearning technique. Most of the performance is retainable even with high
pruning percentage.

Concluding thoughts

● Hyperparameter tuning is very important to achieve high scores

● Final submission was only fine-tuned for 3.2 epochs - maybe not optimal

3rd place solution - Seif Eddine Achour

Details forgotten but
the general idea was

retained

Weighted
cross

entropy

Vision reconstitution
on the Retain Set
through 3 epochs

Slight confusion &
a final stabilisating

epoch

Model
Unlearned!

Vision Confusion Class Imbalance

Hard Differentiability

Competition approach: vision confusion - reconstitution

The confusion process is instant. The whole computation is dedicated to the
vision reconstitution (Time Efficient).

3rd place solution - Seif Eddine Achour

Regression

Paper approach: Loss landscape adjuster

The model forgot totally about the unwanted data despite its big size

Original r-squared = 0.28 vs Unlearned r-squared = 0.97!

3rd place solution - Seif Eddine Achour

Paper approach: Loss landscape adjuster

Classification

● Good results without considering the Forget Set (1st approach)

The proper use of the Forget Set will certainly improve results

-1% accuracy on Retain Set lead to -24% of accuracy on Forget Set

● The retrained model is not always the ideal one

The metric which check the similitude between the unlearned and
retrained model is not that representative for the unlearning
performance

2nd place solution - [kookmin Univ] LD&BGW&KJH

Gradient-based re-initialization method
We assumed that if the gradients of the weights in the model, specifically in the retain set and forget set, are similar, it becomes
challenging to forget information from the forget set during the retraining of the retain set.

proposed gradient-based re-initialization method for unlearning consists of three main steps:

1. Gradient Collection:
Gradient information is collected from the forget set and the retain set.

2. Weight initialization:
Based on the gradient information collected in the first step, a percentage of the convolution filter weights are re-initialized.

3. Retraining:
The model is retrained with the retain set. The learning rate for the Uninitialized weights uses 1/10 of the base learning rates.

2nd place solution - [kookmin Univ] LD&BGW&KJH

1. Gradient Collection

2. Weight initialization

● Collect gradients of forget set using gradient ascent

● Collect gradients of retain set using gradient descent

● Random sampling was used from the retain set to match the
number of samples in the forget set

● In short, this is simply subtracting forget set’s gradient from
the retain set’s gradient

● Based on the gradient information a percentage of the
convolution filter weights are re-initialized

● Our best method re-initialized 30% of convolution filter
weights

2nd place solution - [kookmin Univ] LD&BGW&KJH

3. Retraining

● Re-initialized Model is trained using the retain set

● Learning rate for the uninitialized weights uses 1/10 of the base learning rates (accomplished by scaling the gradient of
uninitialized weight)

● Used a linear decay learning rate scheduler with a few warmup epoch

○ Consistently produces better results than other learning rate schedulers

○ Used warmup epoch of 3
(0.00033 to 0.001 in the first 3 epochs, and then linearly decreases from 0.001 to 0.00033 in the last 2 epochs)

1st place solution - fanchuan

1. Forget phase: minimize KL-divergence between output logits
and a uniform pseudo label on forget set.

2. Adversarial fine-tuning phase. Alternate between "forget" and
"retain" rounds:

Forget round: Maximize dissimilarity
between logits of forget and retain set

Retain: original loss (cross entropy) on retain set.

Trick: Increase batch size from 64 to 258 to be able to perform more epochs (6 -> 8)

Conclusion

4

Thank you.

Thank you. Firstname Lastname
Title

Firstname Lastname
Title

Firstname Lastname
Title

Firstname Lastname
Title

Firstname Lastname
Title

Colors

900

800

700

600

500

400

300

200

100

50

900

800

700

600

500

400

300

200

100

50

900

800

700

600

500

400

300

200

100

50

900

800

700

600

500

400

300

200

100

50

900

800

700

600

500

400

300

200

100

50

The gold standard of unlearning

How good is our approximation?

How close are these two distributions?

