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Introduction

Empirical food web

Figure: La Grande Caricaie, Switzerland, from L-F Bersier
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Introduction

Ecosystem modelling: a toy model

Figure: Predator prey system
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Introduction

Ecosystem modelling: a toy model

Figure: Predator prey system state space

Comput. biol. group (Fribourg) Structural instabilities of ecosystem dynamics and climate change HES-SO, Sion 2023 4 / 52



Introduction

Ecosystem modelling: a toy model

Figure: Predator prey system: Lotka-Volterra (LV) differential equation
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Introduction

Ecosystem modelling: a toy model

Figure: Predator prey system: Vector Field
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Introduction

Ecosystem modelling: a toy model

Figure: The vector field (green) and a trajectory
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Introduction

Vector fields and ordinary differential equations (o.d.e.)

dx1

dt
= F1(x1,x2)

dx2

dt
= F2(x1,x2).

2.0 2.5 3.0 3.5 4.0 4.5 5.0

2.0

2.5

3.0

3.5

4.0

Figure: Vector field F = (F1,F2) leads to o.d.e. The orbits are tangent to the vector
field
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Introduction

Feasible equilibria x∗ > 0 with F(x∗) = 0

One looks for
special states x∗ such that F(x∗) = 0, which are the so-called equilibria of
the o.d.e., which give constant solutions,
and more importantly, at feasible equilibria with x∗ > 0 and F(x∗) = 0 for
which all species persist.
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Figure: Equilibrium x∗ with F(x∗) = 0
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Introduction

Stable equilibria

Such equilibria can be stable
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Figure: Stable equilibrium x∗: orbits starting near x∗ will converge toward x∗
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Introduction

Unstable equilibria

or unstable
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Figure: In this case, the equilibrium is unstable: the orbits avoid the equilibrium
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Introduction

Jacobian matrix at x∗ and stability of x∗
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Let x∗ be an equilibrium with F(x∗) = 0. Let J(x∗) = DF(x∗) be the Jacobian
matrix of F at x∗, with

J(x∗) =

(
∂F1
∂x1

(x∗) ∂F1
∂x2

(x∗)
∂F2
∂x1

(x∗) ∂F2
∂x2

(x∗)

)

x∗ is stable when all of the real parts of the eigenvalue of J(x∗) are negative.
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Introduction McArthur consumer-resource model

Example: Food-web with two producers and one consumer
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Figure: The o.d.e. associated to a consumer-resource web. The solutions are such
that xi (t) > 0 when xi (0) > 0.

Interspecific competition coefficient a < 0.

Intraspecific competition coefficient θ < 0.
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Introduction McArthur consumer-resource model

Food-web with two producers and one consumer
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Figure: The o.d.e. associated to a consumer-resource web

The related vector field F = (F1,F2,F2) is

F1(x) = x1(1 + θx1 + ax2− x3),

F2(x) = x2(1 + θx2 + ax1− x3),

F3(x) = x3(−1 + θx3 + x1 + x2).
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Introduction McArthur consumer-resource model

Equilibria and parameter changes
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Set θ =−1. When |a|> 1, the consumer’s non-zero critical value x∗3 6= 0
becomes negative: no feasible equilibrium

When |a|< 1, the non-zero equilibrium has positive components so that
all species persist. The non-zero equilibrium x∗ with F(x∗) = 0 is stable
and feasible.

When |a|> 1, the consumer becomes extinct x∗3 = 0 while the two
consumers attain positive equilibria x∗1 = x∗2 > 0.
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General LV dynamics Lotka-Volterra model

Lotka-Volterra dynamical systems on complex networks

dxi

dt
= xi

(
ri + θxi +∑

j
aijxj

)
, i = 1, . . . ,S,

where

S is the number of species of the ecosystem,

aij : per capita effect of species j on species i

ri : intrinsic growth rate of species i

θ < 0: coefficient reflecting intraspecific competition
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General LV dynamics Interaction sign

Lotka-Volterra model

dxi

dt
= xi

(
ri + θxi +∑

j
aijxj

)
.

For food webs that describe who eats whom, species j preys on species i when

aij < 0 and aji > 0.

One can then consider a directed graph where the arrow (i→ j) means
that j consumes i .

In more general webs,competition (or mutualism) between species i and j is
modelled by imposing aij < 0 and aji < 0 (or aij > 0 and aji > 0).
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General LV dynamics Web topologies

Food web and adjacency matrix
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General LV dynamics Web topologies

The Bridge Brook Lake matrix
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General LV dynamics Web topology and stability

The cascade model (Cohen, 1985)
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General LV dynamics Web topology and stability

The cascade model

The cascade model is stochastic: species can only consume prey of lower rank
with some probability which is the same for all species. The related adjacency
matrices are upper triangular, with no cannibalistic loop and no circuits. Cohen
discovered an excess of non-triangulated webs compared to observed
food-webs.
The cascade model poorly reproduces the structure of highly resolved
food-webs.
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General LV dynamics Web topology and stability

The niche model (Martinez, 2000)
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General LV dynamics Web topology and stability

Stochastic niche models and beyond

Based on the assumption of a single trophic niche dimension

Produce contiguous diets for all species and interval food-webs

Able to reproduce closely many empirical patterns

Major improvement of the cascade model but

Contiguous diets are never observed in observed food-webs.

Besides the cascade and the niche models, the nested-hierachy model (Cattin,
2004) and and a model of Rossberg (2005) take evolutionary of food-webs
into account and relaxes the intervality of the diets of the niche model. We will
also use observed food-webs.
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General LV dynamics Web topology and stability

Complex random predator-prey network models

Mathematical models have been designed to mimic properties of experimental
webs:

1

30

15

1

30

15

1

30

15

1 3015 1 3015 1 3015

Species index (as prey)

S
p

e
c
ie

s
 i
n

d
e

x
 (

a
s
 p

re
d

a
to

r)

a

b

c

d f

Figure: Three network mathematical model for predation. (a-b) Unstructured networks.
(c-d) Cascade model. (e-f) Niche model, which have designed to mimic the topologies
of empirical webs
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General LV dynamics Web topology and stability

Random webs
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Random unstructured webs: Random graphs of Erdös-Renyi type
where the probability that any edge is present is given by
C = L/S(S−1), where L is the total number of edges.

Structured networks: Random webs obtained from the cascade, niche
and nested hierarchy models and empirical webs
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General LV dynamics random interactions weights

Random interaction weights

In most empirical network, both the growth rate vector r and the interaction
matrix A are unknown

A possible method for overcoming this problem consists in assuming that r is
random. The interaction matrix A = (aij) is chosen at random with, e.g.
gaussian entries, of variance σ2.

This method has been used in practical situations for example to predict the
effect of introducing a new species to an ecosystem (which can be very risky),
see, e.g. Baker et al., Conservation Biol. 2016.
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General LV dynamics Interaction strength

Interaction strength

dx
dt

= x ◦
(

r + (θid +
1

(CS)δ
A)x
)
.

The interaction strength coefficient 0 < δ≤ 1 defines three regimes:

Strong interaction strength: δ < 1/2.

Moderate interaction strength: δ = 1/2.

Weak interaction strength: δ > 1/2.

The moderate interaction regime with δ = 1/2 ensures that the total effect of
interactions on species is controlled for species rich systems and is O(1) of
O(1) variance as a function of S.

Comput. biol. group (Fribourg) Structural instabilities of ecosystem dynamics and climate change HES-SO, Sion 2023 27 / 52



General LV dynamics Web topology, interaction weights and stability

Web topology, interaction strengths and stability

Let x∗ be such that F(x∗) = 0 where F is the vector field associated to a LV
dynamics. x∗ is feasible when x∗ > 0.

What are the roles of web topologies and interaction strengths on feasibility
and stability of x∗ ?

There is no clear answer at present time. All observed empirical webs exhibit
similar topological properties. Usually biologists think that web topologies play
a fundamental role, while other state that the topology only plays a marginal
role...

Concerning the role of interaction strengths for complex webs, weak interaction
strengths seem to enforce stability and feasibility. But no clear view point on
this question
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Stability and feasibility for general LV dynamics

Climate change and LV models

We will present some results on structural instabilities associated to such
models, where small changes in parameters like interaction coefficients for LV
dynamics can change drastically the nature of the equilibria, like e.g. stable
equilibria that change into unstable equilibria.

We will then consider such consumer-resource models where the interaction
parameters depend on temperature and where consumers interact in a direct
way with interaction coefficients γij

dNi
dt

Ni
= di

(
Ki −

n

∑
j=1

αijNj −
n

∑
j=1

γijNj

)
, (1)

and present the effect of high temperature amplitudes on ecosystems.
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Stability and feasibility for general LV dynamics

Lotka-Volterra dynamical systems on random networks
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For each realization of the random network, consider the following system of
differential equations

dxi

dt
= xi

(
ri + θxi +

1

(CS)δ ∑
j

aijxj

)
.
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Stability and feasibility for general LV dynamics

Lotka-Volterra dynamical systems on complex networks

dxi

dt
= xi

(
ri + θxi +

1

Sδ ∑
j

aijxj

)
,

where

aij : per capita effect of species j on species i ,

ri : intrinsic growth rate of species i ,

θ: coefficient reflecting intraspecific competition,

C = 1.

δ: scaling factor modelling interaction strength.
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Stability and feasibility for general LV dynamics

Lotka-Volterra dynamical systems on complex networks

dx
dt

= x ◦
(

r + (θid +
1

Sδ
A)x
)
.

One first looks at the equilibria x∗ which solve the system

0 = x∗ ◦
(

r + (θid +
1

Sδ
A)x∗

)
,

and then looks for its feasibility and its stability properties as a function of both
r and A.
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Stability and feasibility for general LV dynamics

Feasibility and stability of equilibria

An equilibrium solving the equation

r + (θid +
1

Sδ
A)x∗ = 0,

is feasible when x∗i > 0, ∀i . It is linearly stable when the Jacobian matrix
(the community matrix)

J(x∗) = diag(x∗)(θid +
1

Sδ
A),

has eigenvalues of negative real parts. It can be shown that stability can
studied by looking solely at θid + 1

Sδ
A.
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Stability and feasibility for general LV dynamics

May stability condition

McArthur (1955) argued that complexity, as e.g., measured using the number
of edges in experimental webs or as a function of species richness, begets
stability.

This consensus was challenged by Levins, Ashby, Gardner and May in
the seventies.

May used tools from random matrix theory.
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Stability and feasibility for general LV dynamics

The circular law

When the interaction coefficients aij are i.i.d. centered random variables of unit
variance, the eigenvalues of A are asymptotically located inside the disc of
radius

√
S
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Stability and feasibility for general LV dynamics

The circular law

For centered entries aij of variance σ2, the eigenvalues λi are located in the
disc of radius σ

√
S. The real parts of the eigenvalues λ̃i of θid + 1

Sδ
A are such

that

Re(λ̃i)≤ θ +

√
S

Sδ
σ,

so that the stability of x∗ is ensured when
√

S

Sδ
σ < |θ|.

May’s original argument for the case δ = 0: As the web becomes more
complex with S >> 1, the equilibrium is unstable.

When δ = 1/2, stability occurs when σ < |θ|.
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Probability of feasibility

Feasibility

Let

B := (θid +
1

Sδ
A), so that x∗ =−B−1r .

The probability of feasibility is defined by

PS = PA,r (x∗ =−B−1r > 0),

when A and r are chosen at random.
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Feasibility for random unstructured webs

Feasibility for random unstructured webs

In Dougoud et al. (2018), we focus on the moderate interaction strength regime
δ = 1/2, and assume that the underlying random graph is of Erdös-Renyi type.

Suppose that

the random growth rates ri are i.i.d., independent of A,

the entries aij are i.i.d. centered,

E(r2)E(a2
11) < θ2/4.

Then the equilibrium x∗ is composed of asymptotically independent gaussian
random variables
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Feasibility for random unstructured webs

Feasibility for random unstructured webs

The random equilibrium x∗ = (x∗i ) is such that the random variable are
asymptotically independent with the same normal distribution of mean µ and
variance σ̂2 given by

µ =−E(r1)

θ
> 0, σ̂

2 =
Var(r1)

θ2 +
E(r2

1 )σ2

θ2(θ2−σ2)
.

Hence,

PS = P(x∗i > 0, i = 1, . . . ,S)∼
S

∏
i=1

P(x∗i > 0) = P(x∗1 > 0)S,

with

P(x∗1 > 0)∼ Φ(
E(r1)

σ̂
) where Φ(t) =

∫ t

−∞

1√
2π

exp(−u2

2
)du.
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Feasibility for random unstructured webs

Probabiliy of feasibility for large random unstructured webs

Therefore,

0≤ PS ∼ Φ(
E(r1)

σ̂
)S,

where Φ is the standard gaussian cumulative distribution function.
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Figure: Plot of PS for increasing species numbers S. Predictions for random
mutualistic networks, random competitive networks, random predator-prey networks,
the cascade model, the niche model, and the nested-hierarchy model.
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Feasibility for random unstructured webs

Feasible steady states are stable

Figure: b) moderate interactions: eigenvalues of the Jacobian J(x∗) for 100
realizations of May’s model when S = 150, θ =−1 and σ = 0.4. Eigenvalues of
feasible systems are in blue

Comput. biol. group (Fribourg) Structural instabilities of ecosystem dynamics and climate change HES-SO, Sion 2023 41 / 52



Feasibility for random unstructured webs

A feasibility phase transition

In a recent work, Bizeul and Najim (2019) consider random LV linear
equilibrium equations (θ =−1, r = 1S)

1− x∗i +
1

αSS1/2 ∑
j

aijx
∗
j ≡ 0, 1S + Bx∗ = 0,

where αS → ∞ as S→ ∞. Let

α
∗
S =

√
2 ln(S).

They proved the following phase transition phenomenon
If there exists ε > 0 with αS ≤ (1− ε)α∗S , then

P(minx∗i > 0)−→ 0,

If there exists ε > 0 with αS ≥ (1 + ε)α∗S , then

P(minx∗i > 0)−→ 1.
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Feasibility for random unstructured webs

Stability but no feasibility, loss of biodiversity

When σ is fixed, stable equilibria of LV dynamics with random coefficients are
not feasible, so that species extinctions occur generically in LV
mathematical models of species rich ecosystems, for both unstructured
and structured models exhibiting competition, mutualism and predation.

Adopting the LV modelling framework, one can try to check what are the
consequences of climate change on the LV dynamics.
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Feasibility for random unstructured webs

Globally asymptotically stable equilibria

Clenet et al. (2022), arXiv, considered LV systems with

B =−id +
A

α
√

S
+

µ
S

11T ,

where 1 = (1, . . . ,1)T . The dashed grey domain ensures the existence of a
unique (non-feasible) globally asymptotically stable equilibrium (a = α and
m = µ)
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McArthur model Consumer-resource web and McArthur model

Consumer-resource web
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Figure: The o.d.e. associated to a consumer-resource web.

Interspecific competition coefficient a < 0.

Intraspecific competition coefficient θ < 0.
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McArthur model Consumer-resource web and McArthur model

McArthur model for consumer-resource webs

MacArthur developed a seminal consumer resource model that describes the
time evolution of the biomass Ni of consumer i and that of abundance of
resource k :

dNi

dt
= diNi

(
∑
k

cik wk Rk −Ti

)
, (2)

where

Rk denotes the abundance of resource k ,

wk is the weight of item of resource k in gram,

cik is the probability that consumer i encounters and eats an item of
resource k per unit of time,

di is a constant of proportionality governing the biochemical conversion of
grams of resource into grams of Ni .
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McArthur model Consumer-resource web and McArthur model

McArthur model for consumer-resource webs

The resources have equations describing their own renewal

dRk
dt

Rk
= { rk

Kk
(Kk −Rk )}−∑

j
cjk Nj , , (3)

where the term in bracket is a logistics self-inhibition of resource by itself.

MacArthur assumed a quasi-equilibrium by setting dRk/dt = 0, so that

Rk = Kk −∑
j

cjk
Kk

rk
Nj , (4)
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McArthur model Consumer-resource web and McArthur model

Consumer-resource dynamics at quasi-equilibrium

This quasi-equilibrium leads to the LV equation

dNi
dt

Ni
= di

(
Ki −

n

∑
j=1

αijNj

)
, (5)

with indirect resource based interaction coefficient

αij = ∑
k

cik cjk
wk Kk

rk
= αji .

For a single resource, this becomes αij = cicj . Within this quasi-equilibrium
where resources reach equilibrium much faster than consumers, the
competition matrix α is symmetric. MacArthur used this symmetry to get a
Lyapunov function that shows that the orbit of the o.d.e. reach the globally
asymptotically stable equilibrium point.
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McArthur model Consumer-resource web and McArthur model

Consumer-resource dynamics at quasi-equilibrium

We obtained the following LV system assuming quasi-equilibrium in the
McArthur consumer-resource system

dNi

dt
= diNi

(
Ki −

S

∑
j=1

αijNj

)
, (6)

with indirect resource based interaction coefficient

αij =
M

∑
k=1

cik cjk = αji ,

for M resources. This corresponds to a LV model with interaction matrix

B =−CCT , C = (cik ) ∈ RS x M .

In this case there is a unique globally asymptotically stable equilibrium
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Structural instabilities for consumer-resource models

Dalmedigos and Bunin, PLOS Comput. Biol. 2020, considered perturbations of
(6) of the form

dNi

dt
= diNi

(
Ki +

S

∑
j=1

BijNj

)
+ ηi ,

where the extra parameter ηi models immigration (which is assumed to be
small). In this study, S, M −→ ∞. The perturbed LV interaction matrix takes the
form

−B = ω (
A√
S

+
µd

S
1S1T

S)︸ ︷︷ ︸
non-symmetric perturbabtion

+
σ2

c

S
(a +

µc√
Sσc

1S1T
M)︸ ︷︷ ︸

C
σc/
√

S

(a +
µc√
Sσc

1S1T
M)T

︸ ︷︷ ︸
CCT

,

where ω is a parameter modelling the strength of the perturbation, which is
adjusted to preserve a fixed amount of perturbation.
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Structural instabilities for consumer-resource models

These plots illustrate perpetual oscillations for the previous model
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Figure: FP: stable equilibrium. PD: persistent dynamics. UG: unbounded growth
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