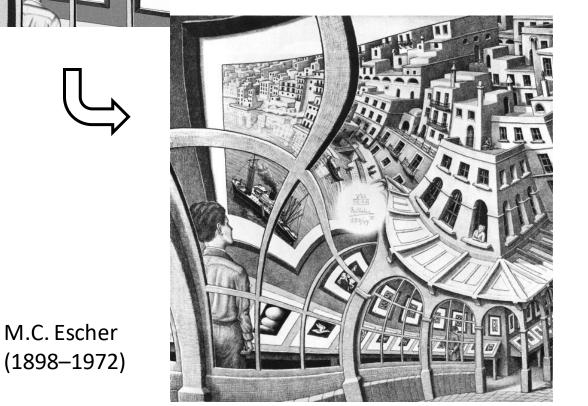
Conformal field theory: physics without scales

Marc Gillioz

MathPhys Seminar — November 2, 2023

...as in **CONFORMAL TRANSFORMATION**

CONFORMAL FIELD THEORY



...as in **QUANTUM FIELD THEORY**

- particle physics
- statistical and condensed matter physics
- string theory (quantum theory of gravity)

A hot topic

- In physics:
 - Breakthrough Prize in Fundamental Physics
 - 2013: Alexander Polyakov
 - 2024: John Cardy & Alexander Zamolodchikov
 - AdS/CFT correspondence: most cited paper in high-energy physics

• In mathematics:

- Fields medals:
 - 2010: Stanislav Smirnov
 - 2022: Hugo Duminil-Copin & Maryna Viazovska

the second se

Hugo Duminil-Copin

For solving longstanding problems in the probabilistic theory of phase transitions in statistical physics, especially in dimensions three and four.

 citation
 video
 popular scientific exposition
 CV/publications

 interview
 laudatio
 proceedings
 Plus magazine! article (intro)

Maryna Viazovska

For the proof that the E_8 lattice provides the densest packing of identical spheres in 8 dimensions, and further contributions to related extremal problems and interpolation problems in Fourier analysis.

 citation
 video
 popular scientific exposition
 CV/publications

 interview
 | laudatio
 proceedings
 Plus magazine! article (intro)

The Large N limit of superconformal field theories and supergravity					
Juan Martin Maldacena (Harvard U.) Nov, 1997					
21 pages Published in: <i>Int.J.Theor.Phys.</i> 38 (1999) 1113-1133 (reprint), <i>Adv.Theor.Math.Phys.</i> 2 (1998) 231-252 e-Print: hep-th/9711200 [hep-th] DOI: 10.4310/ATMP.1998.v2.n2.a1 (publication), 10.1023/A:1026654312961 (reprint) Report number: HUTP-97-A097, HUTP-98-A097 View in: OSTI Information Bridge Server, ADS Abstract Service, AMS MathSciNet					
🕒 pdf	🖃 cite	🗟 claim	a reference search	➔ 19,015 citations	

Part 1

The Ising model

The Ising model

2-dimensional, n x n lattice

"Spins": $\sigma_i = \pm 1$ Energy density: $\varepsilon_i = -\frac{1}{2} \sum_{|i-j|=1} \sigma_i \sigma_j$

Energy:

$$H = -\sum_{|i-j|=1} \sigma_i \sigma_j$$

Ising dynamics

Rules of the game:

- Pick a lattice site at random
- Compute the energy cost ΔE of flipping the spin $\sigma_i \rightarrow -\sigma_i$
 - If $\Delta E < 0$ flip the spin
 - If $\Delta E \ge 0$ flip it anyway with probability $P = e^{-\beta \Delta E}$
- Repeat

 $\beta = \frac{1}{k_B T}$ inverse of temperature in thermodynamics

Correlation length in the Ising model

• Correlation generally decreases exponentially with the distance

$$\langle \sigma_i \sigma_j \rangle \propto \exp\left(-\frac{|i-j|}{\xi(\beta)}\right)$$

• But correlation length diverges at critical value $\beta_c = \frac{\log(1+\sqrt{2})}{2} \cong 0.441$

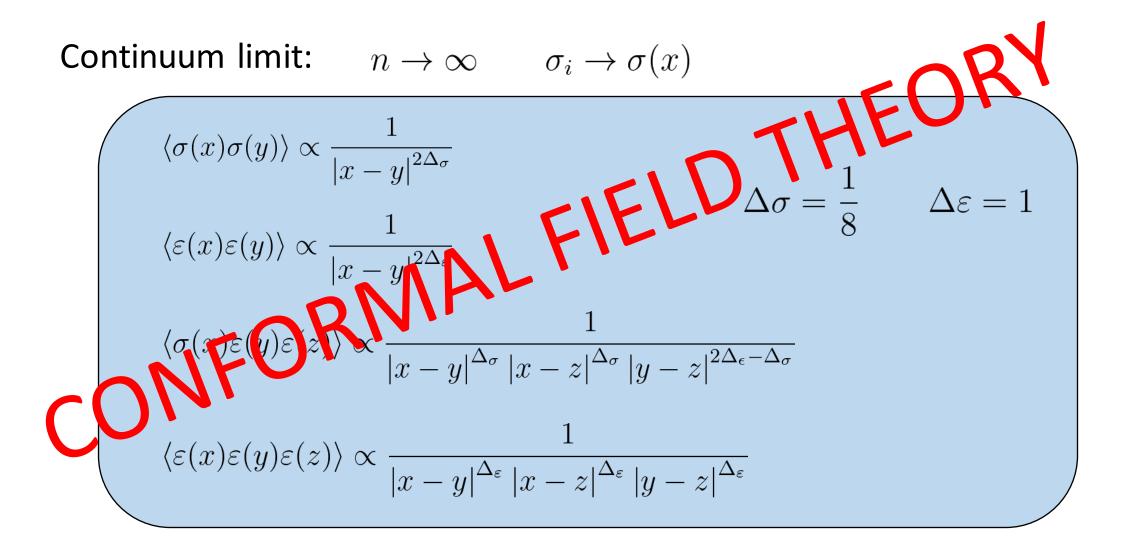
Lars Onsager (1944)

• Correlation at criticality is given by a power of the distance:

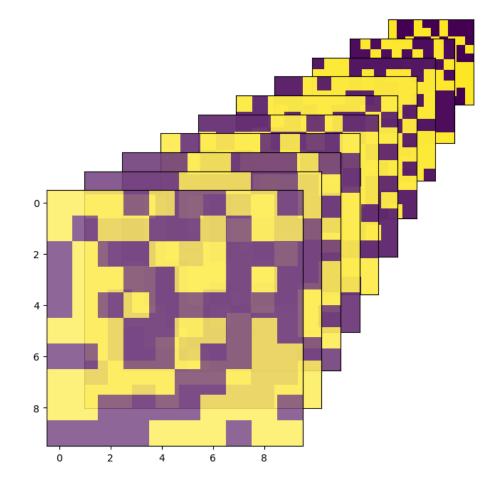
$$\langle \sigma_i \sigma_j \rangle \propto \frac{1}{\left|i-j\right|^{1/4}}$$

Scaling at criticality

(Smirnov's Fields medal)



The Ising model in 3d



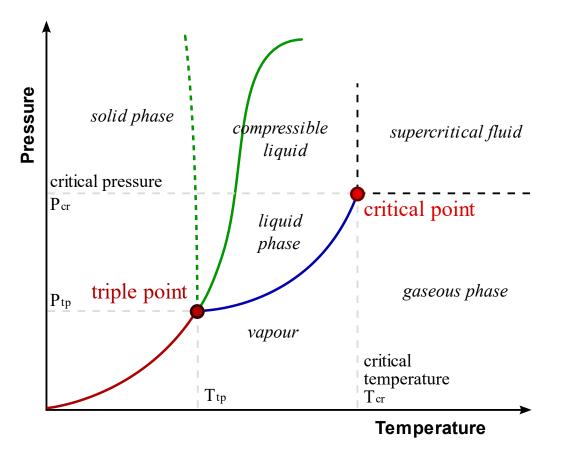
- Unlike 2d, exact solution is unknown
- Still, critical point observed (Duminil-Copin's Fields medal)
- Scaling laws consistent with CFT, with

 $\Delta_{\sigma} \cong 0.518$

 $\Delta_{\varepsilon} \cong 1.413$

Universality of critical phenomena

- Ising model describes ferromagnets
- But not only: critical exponents matching with critical point of liquid-gas transition, e.g. in water
- Connection?
 conformal scale invariance
 - only 2 relevant parameters



By Matthieumarechal, CC BY-SA 3.0

https://commons.wikimedia.org/w/index.php?curid=4623701

Part 2

Conformal symmetry

A fundamental principle in physics

The laws of nature do not depend on the reference frame

Symmetry under

- Translations: $x_i \rightarrow x_i + a_i$
- Rotations: $x_i \to (R \cdot x)_i$ $R^T \cdot R = 1$

These are the most general coordinate transformations that preserve the notion of distance:

$$|x-y| = \sqrt{\sum_{i} (x_i - y_i)^2}$$

Scale symmetry

- If a system does not have a reference scale, two different observers could describe it in terms of different systems of units
- Symmetry under scale transformations:
- Preserves the notion of distance up to **global** rescaling:

$$|x - y| \to \lambda \, |x - y|$$

$$x_i \to \lambda x_i$$

de Smit and Lenstra, *Notices of the AMS* vol. 50 num 4 (446)

Special conformal symmetry

- Observers could even use different units at different points in space
- Local rescaling of the notion of distance $|x y| \rightarrow \Omega(x)\Omega(y) |x y|$
- Solved by the **special conformal transformation**
- $x_i \to \frac{x_i x^2 b_i}{1 2b \cdot x + b^2 x^2}$

- Complete, up to:
 - Inversion $x_i \to x_i/x^2$
 - Many more specifically in 2d

$$\Omega(x) = \left(1 - 2b \cdot x + b^2 x^2\right)^{-1/2}$$

The conformal group

• Conformal transformations in 3d form a group, isomorphic to SO(4,1)

Translations	3
Rotations	3
Scale transformations	1
Special conformal transformations	3
Total	10

- They map spheres onto spheres, and circles onto circles (including the line, a circle of infinite radius)
- 3 points can be mapped onto any 3 other points
- Infinity is treated like a point (conformal group acts on $\mathbb{R}^3 \cup \{\infty\}$)

Conformal field theory

• Require fields to transform covariantly, e.g. for a scalar field

$$\sigma(x) \to \Omega(x)^{-\Delta_{\sigma}} \sigma(x)$$

• 2-point functions:

$$\langle \sigma(x)\sigma(y)\rangle = \frac{1}{|x-y|^{\Delta_{\sigma}}} \qquad \langle \sigma(x)\varepsilon(y)\rangle = 0$$

• 3-point functions:

$$\left\langle \sigma(x)\varepsilon(y)\phi(z)\right\rangle = \frac{C_{\sigma\varepsilon\phi}}{|x-y|^{\Delta_{\sigma}+\Delta_{\varepsilon}-\Delta_{\phi}}|x-z|^{\Delta_{\sigma}+\Delta_{\phi}-\Delta_{\varepsilon}}|y-z|^{\Delta_{\varepsilon}+\Delta_{\phi}-\Delta_{\sigma}}}$$

Quantumness

- The fields are actually operators acting on states
- Unique vacuum state, conformally invariant: $|0\rangle$
- All other states are obtained acting with operators:

 $\sigma(x) |0\rangle, \quad \varepsilon(x) |0\rangle, \quad \dots$

• Correlation functions compute the norm of states:

 $\langle 0 | \sigma(x) \sigma(y) | 0 \rangle$

4-point correlations in a CFT

• Fixed by conformal symmetry up to two "cross-ratios":

$$\langle 0 | \sigma(x)\sigma(y)\sigma(z)\sigma(w) | 0 \rangle = \frac{G(u,v)}{|x-y|^{2\Delta_{\sigma}} |z-w|^{2\Delta_{\sigma}}}$$

• Can be expanded summing over all possible intermediate states

$$\begin{split} &\langle 0 | \ \sigma \sigma \sigma \sigma \ | 0 \rangle \sim \sum_{\phi} \langle 0 | \ \sigma \sigma \phi \ | 0 \rangle \ \langle 0 | \ \phi \sigma \sigma \ | 0 \rangle \\ \Rightarrow \qquad G(u,v) = 1 + \sum_{\phi} C^2_{\sigma \sigma \phi} g_{\phi}(u,v) \longleftarrow \qquad \begin{array}{l} \text{fixed by conformal} \\ \text{symmetry in terms of } \Delta_{\phi} \end{array}$$

 $u = \frac{|x - y|^2 |z - w|^2}{|x - z|^2 |y - w|^2}$

 $v = \frac{|x - w|^2 |y - z|^2}{|x - z|^2 |y - w|^2}$

Conformal bootstrap

• Different ways of summing over states give different sums

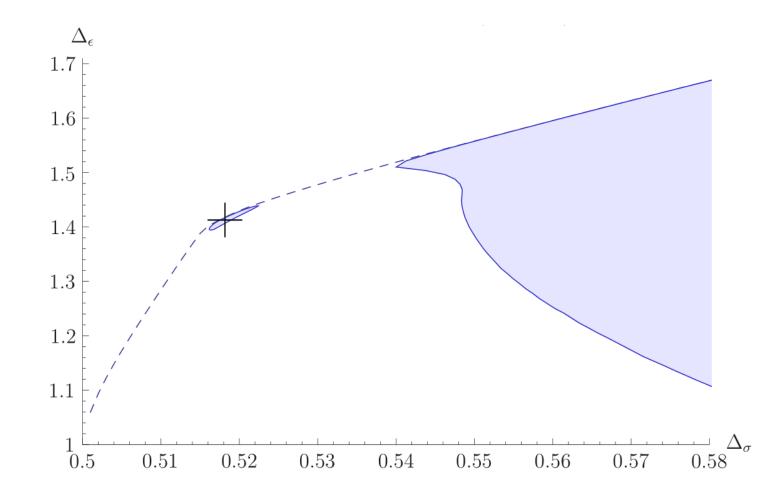
$$1 + \sum_{\phi} C^2_{\sigma\sigma\phi} g_{\phi}(u, v) = \left(\frac{u}{v}\right)^{\Delta_{\sigma}} \left[1 + \sum_{\phi} C^2_{\sigma\sigma\phi} g_{\phi}(v, u)\right]$$

• Maybe not all spectra of operators are consistent with this?

Polyakov (1974)

Idea: find $\Delta_{\sigma}, \Delta_{\phi}$ such that the following equation is inconsistent: $u^{\Delta_{\sigma}} - v^{\Delta_{\sigma}} = \sum_{\phi} C^{2}_{\sigma\sigma\phi} \left[v^{\Delta_{\sigma}} g_{\phi}(u, v) - u^{\Delta_{\sigma}} g_{\phi}(v, u) \right]$ Rattazzi, Rychkov, Tonni, Vichi (2008)

Recovering the 3d Ising model



Assumptions:

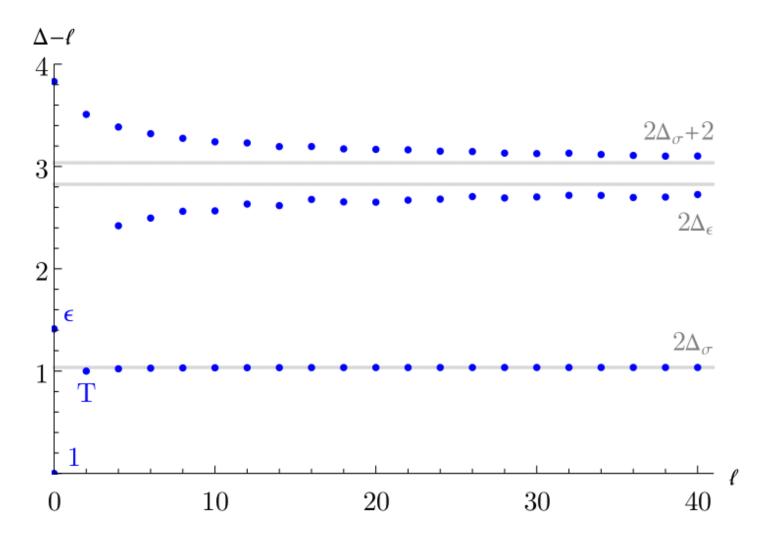
- Conformal symmetry
- 2 relevant operators
- \mathbb{Z}_2 symmetry

Most precise determination of scaling dimension with rigorous error bars (2016):

 $\Delta_{\sigma} = 0.5181489(10)$

F. Kos, D. Poland, and D. Simmons-Duffin, JHEP 11 (2014) 109

Operator spectrum of the 3d Ising model



My figure, data from D. Simmons-Duffin, JHEP 03 (2017) 086

Conformal bootstrap summary

• The space of all CFTs is sparse (explaining universality)

 \Rightarrow Is it possible to classify all of them?

• Quantum field theory formulated in a rigorous way

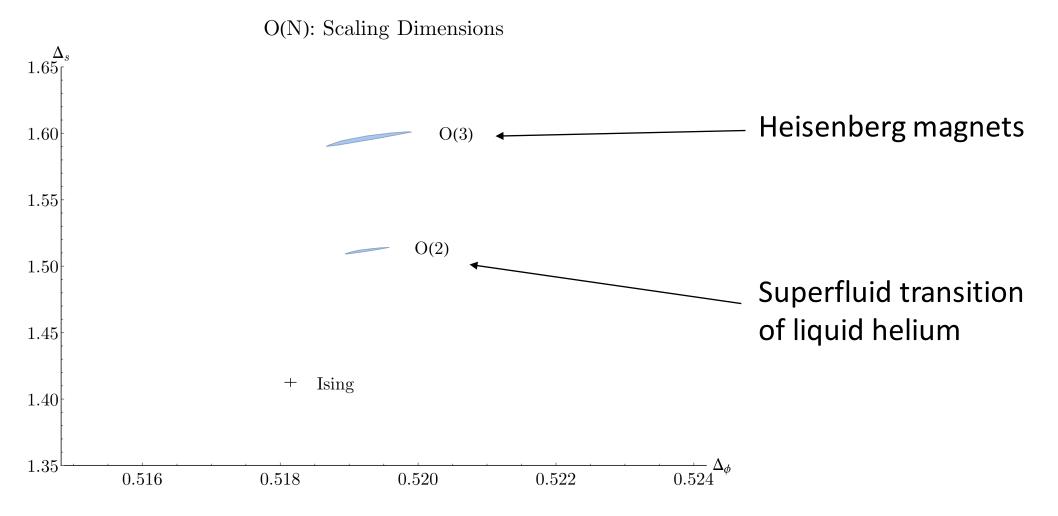
 \Rightarrow Vertex Operator Algebras

• Fun fact: analytic functionals giving the optimal bound are identical to those of the sphere packing problem (Viazovska's Fields medal)

Part 3

A few applications

O(N) models



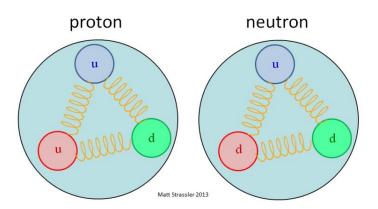
Kos, Poland, Simmons-Duffin, Vichi, JHEP 11 (2015) 106

4 space-time dimensions

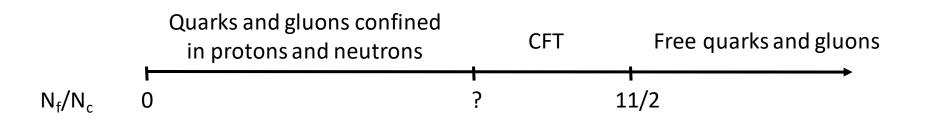
- Same logic applies to space-time coordinates (3 space + 1 time dimension)
- Bigger conformal group:
 - In 3d $\mathbb{R}^3 \rtimes SO(3) \subset SO(4,1)$
 - In 4d $\mathbb{R}^{3,1} \rtimes SO(3,1) \subset SO(4,2)$
- Remark: quantum field theory in 4d is the language of particle physics, but no particles in CFT (except in free theories)

The conformal window of QCD

- "Quantum chromodynamics": the theory of quarks and gluons
- In nature, 3 colors (N_c) and 6 flavors of quarks (N_f)

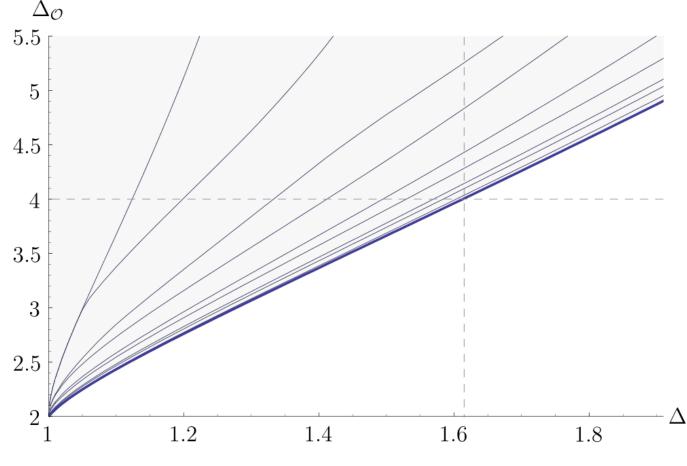


• Thought experiment: what about other N_c and N_f ?



No conclusive results in 4d so far

- Bounds on scalar operators mostly featureless
- Difficult to get bounds on operators with spin and "flavour" symmetries
- Gauge symmetry?
- Exception: supersymmetric theories



D. Poland, D. Simmons-Duffin and A. Vichi, JHEP 05 (2012) 110

Towards a classification?

- Zoo of CFTs in 2 and 3 dimensions
- Indirect arguments in favor of CFTs in 4 dimension
- Some supersymmetric theories in 4, 5 and 6 dimensions
- Nothing interesting above 6 dimensions?