



### Mitigating Biases in Decision-Making Systems: a Control Systems Perspective

Giulia De Pasquale

ETH Zürich

December 11, 2024

### Automated Decision Making (ADM)



ETH Zürich



✓ High scalability

× Exhacerbate existing biases and even introduce new ones

Applications employment health education law

. . .



Algorithmic fairness

 Enforce group fairness metrics to mitigate biases
 solutions are designed for stationary systems

### Automated Decision Making (ADM)



ETH Zürich



✓ High scalability

× Exhacerbate existing biases and even introduce new ones

Applications employment health education law

. . .



Algorithmic fairness

 Enforce group fairness metrics to mitigate biases
 solutions are designed for stationary systems

# A Systems Theory Framework for ADM

ETH Zürich



1

The ML-based decision making pipeline as an open loop system

<sup>&</sup>lt;sup>1</sup>"A classification of feedback loops and their relation to biases in automated decision-making systems", J. Baumann, N. Pagan, E. Elokda, GDP, S. Bolognani, A. Hannak, Conference on Equity and Access in Algorithms, Mechanisms, and Optimization

# A Systems Theory Framework for ADM

ETH Zürich

1



The ML-based decision making pipeline as a closed loop system

<sup>1</sup>"A classification of feedback loops and their relation to biases in automated decision-making systems", J. Baumann, N. Pagan, E. Elokda, GDP, S. Bolognani, A. Hannak, Conference on Equity and Access in Algorithms, Mechanisms, and Optimization

#### Sampling and Individual FL in Recommender Systems







Sampling FL: Representation bias

The available data is not representative of the population: the ML model does not generalize well for the disadvantaged group, e.g. Amazon's Alexa.



Individual FL: Historical bias

Users with high initial interests get recommended the item:  $\theta$  increases over time. Decisions change individual properties, leads to polarization of interests.





### A Solution to Representation Bias<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>"Fairness in Social Influence Maximization via Optimal Transport", S. Chowshary, GDP\*, N. Lanzetti\*, A. Stoica, F. Dörfler, NeurIPS 2024





Suppose you want to sell a product, or make an information spread as much as possible in a social network:



**Social Influence Maximization (SIM)** is the problem of how to strategically selects seeds that spread information throughout a network in order to **maximize the outreach**.





Suppose you want to sell a product, or make an information spread as much as possible in a social network:



**Social Influence Maximization (SIM)** is the problem of how to strategically selects seeds that spread information throughout a network in order to **maximize the outreach**.

### Fairness in SIM



ETH Zürich

Suppose you want to spread the news about an open position as Assistant Professor in Control Engineering:





**Fairness in SIM:** solve SIM by ensuring **balanced outreach** among different communities, e.g. demographic groups.

Spreading mechanism: Independent cascade model



### Fairness in SIM



ETH Zürich

Suppose you want to spread the news about an open position as Assistant Professor in Control Engineering:





**Fairness in SIM:** solve SIM by ensuring **balanced outreach** among different communities, e.g. demographic groups.

Spreading mechanism: Independent cascade model





Given the groups  $C_1, \ldots, C_m$ , a configuration is said to be

Equal, if the SIM algorithm chooses a seed set S such that

$$\frac{\mathbb{E}[|v \in S|v \in C_i|]}{|C_i|} = \frac{\mathbb{E}[|v \in S|v \in C_j|]}{|C_j|} \quad \forall i, j.$$

Equitable, if the SIM algorithm chooses a seed set S such that

$$\frac{\mathbb{E}[|v \text{ reached}|v \in C_i|]}{|C_i|} = \frac{\mathbb{E}[|v \text{ reached}|v \in C_j|]}{|C_j|} \quad \forall i, j.$$

Max-Min Fair, if the SIM algorithm chooses a seed set S such that

$$\min_{i \in [m]} \frac{\mathbb{E}[|v \text{ reached}|v \in C_i|]}{|C_i|}$$

is maximized.



Given the groups  $C_1, \ldots, C_m$ , a configuration is said to be

Equal, if the SIM algorithm chooses a seed set S such that

$$\frac{\mathbb{E}[|v \in S|v \in C_i|]}{|C_i|} = \frac{\mathbb{E}[|v \in S|v \in C_j|]}{|C_j|} \quad \forall i, j.$$





Consider the outcome: "In 50% if the cases, no one in group 1 gets the information and everyone in group 2 does, and in the other 50 % it is the opposite."







We want to answer questions such as as:

- i) When group 1 receives the information, will group 2 also receive it?
- ii) Even if the two groups have the same marginal outreach probability distributions, will the final configurations always be **fair**?

### Motivating Example



ETH Zürich



Figure: Illustration of the  $(\gamma_a, \gamma_b)$  example.

Marginals:  $\mu_i = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1, i \in \{1, 2\}$ Distributions:

 $\gamma_{a} = 0.5 \cdot \delta_{(0,0)} + 0.5 \cdot \delta_{(1,1)}, \qquad \gamma_{b} = 0.25 \cdot \delta_{(0,0)} + 0.25 \cdot \delta_{(1,1)} + 0.25 \cdot \delta_{(0,1)} + 0.25 \cdot \delta_{(1,0)}$ 

<sup>Q</sup> Use the **joint** outreach probability distribution to capture the correlation between the two groups!



• Quantify fairness by computing the distance of the probability distribution  $\gamma$  from an ideal reference distribution  $\gamma^*$  along the diagonal.

**Optimal Transport Problem**: quantifies the minimum transportation cost to morph  $\gamma$  into  $\gamma^*$  when transporting a unit of mass from  $(x_1, x_2)$  to  $(y_1, y_2)$  costs  $c((x_1, x_2), (y_1, y_2))$ .

$$W_{c}(\gamma,\gamma^{*}) = \min_{\pi \in \Pi(\gamma,\gamma^{*})} \mathbb{E}_{(x_{1},x_{2}),(y_{1},y_{2}) \sim \pi}, [c((x_{1},x_{2}),(y_{1},y_{2}))]$$

Ingredients:

- i) transportation cost;
- ii) reference distribution.



#### Transportation Cost:

- moving mass **along** the diagonal costs 0, as it does not affect fairness
- moving mass orthogonally towards the diagonal comes at a price. We quantify the price as the Euclidean distance.







#### Definition (Mutual Fairness)

Given a network with communities  $(C_i)_{i \in [2]}$ , a SIM algorithm is said to be *mutually fair* if the algorithm propagation is such that it maximizes

$$\mathsf{FAIRNESS}(\gamma) \coloneqq 1 - \sqrt{2} W_{\mathsf{c}}(\gamma, \gamma^*),$$

 $\mathcal{W}_{c}(\gamma,\gamma^{*}) = \min_{\pi \in \Pi(\gamma,\gamma^{*})} \mathbb{E}_{(x_{1},x_{2}),(y_{1},y_{2}) \sim \gamma}, [c((x_{1},x_{2}),(y_{1},y_{2}))] \text{ and } \gamma^{*} = \delta_{(1,1)}.$ 

#### **Observations:**

- min FAIRNESS( $\gamma$ ) = 0; argmin =  $\gamma = \delta_{(0,1)}$ ;
- max FAIRNESS( $\gamma$ ) = 1; argmax =  $\gamma^*$ .
- since  $\gamma^*$  is a delta distribution, we can solve the OT problem in closed form and FAIRNESS $(\gamma) = 1 \frac{1}{N} \sum_{i=1}^{N} |x_{1,i} x_{2,i}|$

### Back to the Motivating Example



ETH Zürich



Figure: Illustration of the  $(\gamma_a, \gamma_b)$  example.

FAIRNESS $(\gamma_a) = 1$ FAIRNESS $(\gamma_b) = 0.5$ .



Joint outreach probability distribution for different real datasets, each with a chosen demographic partitioning the population in two groups.

#### Four qualitative outcomes:



### Trading-off Fairness and Efficiency





For both  $\gamma = \delta_{(0,0)}$  and  $\gamma^* = \delta_{(1,1)}$  the fairness score is maximal: We need a fairness-efficiency trade-off! We can define the transportation cost as a weighted sum:

$$\begin{aligned} c_{\beta}((x_{1}, x_{2}), (y_{1}, y_{2})) &= \\ \beta \| z(x_{1}, x_{2}, y_{1}, y_{2}) - (x_{1}, x_{2}) \| + (1 - \beta) \| z(x_{1}, x_{2}, y_{1}, y_{2}) - (y_{1}, y_{2}) \| = \\ \beta \frac{\sqrt{2}}{2} |(x_{2} - x_{1}) - (y_{2} - y_{1})| + (1 - \beta) \frac{\sqrt{2}}{2} |(x_{1} + x_{2}) - (y_{1} + y_{2})|. \end{aligned}$$

Heatmap of  $c_{\beta}$ :









#### Definition ( $\beta$ -Fairness)

Consider a network with groups  $C_1$ ,  $C_2$ , a SIM algorithm is said to be  $\beta$ -fair if the algorithm propagation is such that it maximizes

$$eta - \mathsf{FAIRNESS}(\gamma) \coloneqq 1 - rac{\sqrt{2}}{\max\{1, 2 - 2eta\}} W_{c_eta}(\gamma, \gamma^*),$$

The OT problem can be solved in closed form

$$\beta - \mathsf{FAIRNESS}(\gamma) = \mathbb{E}_{(x_1, x_2) \sim \gamma} \left[ 1 - \frac{\beta |x_1 - x_2| + (1 - \beta)|x_1 + x_2 - 2|}{\max\{1, 2 - 2\beta\}} \right]$$

In particular, for  $\beta = 1$ , we recover the mutual fairness FAIRNESS( $\gamma$ ) and for  $\beta = 0$  we obtain the efficiency metric  $\mathbb{E}_{(x_1, x_2) \sim \gamma} [1 - \frac{x_1 + x_2 - 2}{2}]$ .



Algorithm 1 Stochastic Seedset Selection Descent **Input**: Social Graph  $G(V_G, E_G)$ , initial seed set  $S_0$ ,  $\beta$  fairness weight,  $\epsilon$ -tolerance **Output**: Optimal seedset  $S^*$ 1:  $\mathcal{S} \leftarrow \{\}, S \leftarrow S_0$ ▷ initial collection of candidates, running seedset 2: for k iterations do  $\triangleright$  configurable k  $V_S \leftarrow$  nodes reachable from S via cascade, using SEEDSET\_REACH routine 3: 4:  $S' \leftarrow \{\}$  $\triangleright$  searching nearby states,  $V_{S'}$ , to get S' (Appendix E.3) 5: for |S| iterations do  $S' \leftarrow S' \cup \{v\} \mid v \sim V_S$ 6:  $V_{S'} \leftarrow$  nodes reachable from S' in a fixed horizon, using SEEDSET\_REACH 7:  $V_S \leftarrow V_S \setminus V_{S'}$ 8:  $E_S \leftarrow -\text{BETA}_{\text{FAIRNESS}}(S, \beta)$  $\triangleright$  expected potential energy defined on  $\beta$ -fairness 9:  $E_{S'} \leftarrow -\text{BETA}_{FAIRNESS}(S', \beta)$ 10: 2  $p_{\text{accept}} \leftarrow \min\{\overline{1}, e^{E_S - E_{S'}}\}$  $\triangleright S'$  acceptance on energy minimization 11: if  $x \sim \mathcal{B}(p_{\text{accept}})$  then Metropolis sampling 12:  $S^+ \leftarrow S'$ 13: ⊳ get a better seedset 14: else 15: if  $x \sim \mathcal{B}(\epsilon)$  then  $\triangleright$  for some small constant  $\epsilon$ 3  $S^+ \leftarrow \{v_i\}_{i=1}^{|S|} \stackrel{|S|}{\sim} V_G$ 16: ▷ random seedset 17: else  $S^+ \leftarrow S$ ▷ retain existing choice 18:  $\mathcal{S} \leftarrow \mathcal{S} \cup \{S^+\}$ 19:  $S \leftarrow S^+$ 20: ▷ for next iteration 21:  $S^* \leftarrow S \in \mathcal{S} \mid \text{BETA}_{\text{FAIRNESS}}(S, \beta)$  is maximum ▷ via s3D\_ITERATE 22: return S\*

#### Are the outcomes more fair?



ETH Zürich



Degree-based algorithms:  $\Box = bas_d$ ,  $\bigcirc = S3D_d$ , and  $\diamondsuit = hrt_d$ .





- New fairness metric for SIM that captures new fairness-related aspects;
- We leverage β-fairness to design a new seed selection strategy that tradeoffs fairness and efficiency;
- We show superior fairness performance with minor decrease in efficiency.
- **Note**: Mutual fairness is applicable whenever you have empirical distributions associated with groups.

#### Sampling and Individual FL in Recommender Systems







Sampling FL: Representation bias

The available data is not representative of the population: the ML model does not generalize well for the disadvantaged group, e.g. Amazon's Alexa



Individual FL: Historical bias

Users with high initial interests get recommended the item:  $\theta$  increases over time. Decisions change individual properties, leads to polarization of interests.





### A Solution to Historical Bias<sup>3</sup>

<sup>&</sup>lt;sup>3</sup>S. Chandrasekaran, GDP, G. Belgioioso, F. Dörfler, "Mitigating Polarization in Recommender Systems via Network-aware Feedback Optimization", submitted.

### Recommender Systems in ML







#### CONTENT-BASED FILTERING

### Paper's Motivation



ETH Zürich



Make the feedback loop explicit, to understand



- i) the impact of recommendation on users opinions;
- ii) how recommender systems should depart from engagement maximization to mitigate polarization.



We leverage on **online feedback optimization** to design a RS as a dynamic feedback controller that mitigates polarization by providing user personalized content, using only **implicit feedback**.



**Assumption:** one single topic of discussion **Assumption:** The dynamics is exponentially stable and admits a unique steady-state map

$$h(p,d) = f(h(p,d), p, d)$$

with h(p, d) continuously-differentiable and *L*-lipschitz wrt *p*.

### **Problem Formulation**



ETH Zürich

$$\begin{split} \min_{p,x} \varphi^{\text{clk}}(p,x) + \gamma \varphi^{\text{pol}}(x) \\ \text{s.t. } x &= h(p,d) \\ p \in [-1,1]^n \end{split}$$

Challenges:

■ only clicks are available: opinions, opinion dynamics, network topology, clicking behaviour, external influence unknown → the problem must be solved online

$$\begin{array}{l} \varphi^{\text{clk}} = -\sum_{i \in [n]} \mathbb{E}_{c_i \sim \mathcal{B}(g_i(x_i, p_i))}[c_i] \\ \varphi^{\text{pol}}(x) = \|x\|^2 \end{array}$$



■ non-convex problem The recommender system only relies on clicks:  $\frac{\#clk}{\#news} \approx \mathbb{E}[\mathcal{B}(g(p,x))] = g(p,x).$ 



The recommender system dynamically generates recommendation via projected gradient descent

$$p^{+} = \operatorname{proj}_{[-1,1]}[p - \eta \underbrace{(\nabla_{p}\varphi(p, x) + \nabla_{p}h(p, d)^{\top}\nabla_{x}\varphi(p, x))}_{\nabla\varphi}]$$

 $\varphi = \varphi^{\rm clk} + \varphi^{\rm pol}.$ 

#### Challenges

Evaluating  $\nabla \varphi$  requires access to:

- i) Online opinions x
- ii) Sensitivity mapping  $\nabla_p h(p, d)$
- iii) Gradients  $\nabla_p \varphi(p, x)$ ,  $\nabla_x \varphi(p, x)$

None of these information is available online!

### Outline



ETH Zürich



### Outline









The recommender system dynamically generates recommendation via projected gradient descent

$$\boldsymbol{p}^{+} = \operatorname{proj}_{[-1,1]}[\boldsymbol{p} - \eta \underbrace{(\nabla_{\boldsymbol{p}}\varphi(\boldsymbol{p},\boldsymbol{x}) + \nabla_{\boldsymbol{p}}h(\boldsymbol{p},\boldsymbol{d})^{\top}\nabla_{\boldsymbol{x}}\varphi(\boldsymbol{p},\boldsymbol{x}))}_{\nabla\varphi}]$$

#### Training data collection

Repeat #training times:



### Level 1: Opinions Estimation



ETH Zürich

#### Assumption:

- i) There exists a continuous mapping  $\beta(\bar{c}, p) = x + \theta(x), \|\theta(x)\| \le \theta$
- ii) g(x, p) is Lipshitz and globally smooth.

There exists  $\alpha$  s.t.  $g(p, \beta(\bar{c}, p)) = \bar{c} + \nabla_x g(p, x)^\top \theta(x) + \alpha(\bar{c}),$  $\|\alpha(\bar{c})\| \le \alpha$ 



Opinion estimation error

$$\|\overbrace{h(p,d)-\hat{\beta}}^{\epsilon_{x}}\| \leq \sqrt{n}(\sup_{\bar{c},p} \|\beta - \hat{\beta}\|_{\infty} + \text{ ANN bias})$$

Training is carried out distributedly

<sup>3</sup>Tabuada, Charesifard, "Universal approximation power of deep residual neural networks through the lens of control", TAC, 2023

## Level 1: Clicking Behaviour Estimation

#### Assumption:

- i) There exists a continuous mapping  $\beta(\bar{c}, p) = x + \theta(x), \|\theta(x)\| \le \theta$
- ii) g(x, p) is Lipshitz and globally smooth.

There exists  $\alpha$  s.t.  $g(p, \beta(\bar{c}, p)) = \bar{c} + \nabla_x g(p, x)^\top \theta(x) + \alpha(\bar{c}),$  $\|\alpha(\bar{c})\| \le \alpha$ 



$$\int p \text{ via OFO}$$

clicking behaviour estimation error

$$\| \overbrace{\widehat{g}(p, \widehat{x}) - g(p, h(p, d))}^{\epsilon_g} \| \le \sqrt{n} (\sup_{p, x} \| g(p, x) - \widehat{g}(p, x) \|_{\infty} + \text{ANN bias} + f(\theta, \alpha) )$$

<sup>3</sup>Tabuada, Charesifard, "Universal approximation power of deep residual neural networks through the lens of control", TAC, 2023

AUTOMATIC

### Outline



ETH Zürich







The recommender system dynamically generates recommendation via projected gradient descent

$$\boldsymbol{\rho}^{+} = \operatorname{proj}_{[-1,1]}[\boldsymbol{\rho} - \eta \underbrace{\left(\nabla_{\boldsymbol{\rho}}\varphi(\boldsymbol{\rho}, \boldsymbol{x}) + \nabla_{\boldsymbol{\rho}}h(\boldsymbol{\rho}, \boldsymbol{d})^{\top}\nabla_{\boldsymbol{x}}\varphi(\boldsymbol{\rho}, \boldsymbol{x})\right)}_{\nabla\varphi}]$$

To estimate the sensitivity online we rely on Kalman filter. Note:  $\nabla_p h_{ij}(p, d) \neq 0 \rightarrow j$  and *i* are connected

To ensure the sensitivity estimate is accurate: Assumption: The inputs p are persistently exciting.

### Outline



ETH Zürich





The recommender system dynamically generates recommendation via projected gradient descent

$$\boldsymbol{p}^{+} = \operatorname{proj}_{[-1,1]}[\boldsymbol{p} - \eta \underbrace{\left(\nabla_{\boldsymbol{p}} \varphi(\boldsymbol{p}, \boldsymbol{x}) + \nabla_{\boldsymbol{p}} h(\boldsymbol{p}, \boldsymbol{d})^{\top} \nabla_{\boldsymbol{x}} \varphi(\boldsymbol{p}, \boldsymbol{x})\right)}_{\nabla \varphi}]$$

 $\varphi=\varphi^{\rm clk}+\varphi^{\rm pol}.$  Estimation via forward difference method

$$abla_x \hat{arphi}_i^{ ext{clk}}(m{p},x) = rac{\hat{arphi}^{ ext{clk}}(m{p},x+\mu e_i) - \hat{arphi}^{ ext{clk}}(m{p},x)}{\mu}. 
onumber 
onu$$

Gradient estimation error

Under the previous regularity assumptions on  $\beta, g$ 

$$\|\nabla \hat{\varphi}^{\text{clk}} - \nabla \varphi^{\text{clk}}\| \leq \frac{1}{2}L_{x}\mu + 2\frac{\sqrt{n}\epsilon_{g}}{\mu}; \quad \mu^{*} = 2n^{1/4}\sqrt{\frac{\epsilon_{g}}{L}}$$

Smoothing parameter  $\mu$ , requires fine tooning: small, but not too much!

#### Recap



ETH Zürich

We now collected all the ingedients to run gradient descent for the recommender system algorithm:

$$\boldsymbol{p}^{k+1} = \operatorname{proj}\left[\boldsymbol{p}^{k} - \eta \zeta^{k} (\nabla_{\boldsymbol{p}} \hat{\varphi}^{\mathrm{clk}}(\boldsymbol{p}^{k}, \hat{\boldsymbol{x}}^{k}) + \nabla_{\boldsymbol{p}} \hat{\boldsymbol{h}}(\boldsymbol{p}^{k}, \boldsymbol{d})^{\top} \nabla_{\boldsymbol{x}} \hat{\varphi}^{\mathrm{clk}}(\boldsymbol{p}^{k}, \hat{\boldsymbol{x}}^{k}))\right]$$



## The RS Algorithm



ETH Zürich

#### Initialization

Collect data during training Build opinion and clicking behaviour estimators  $(\hat{\beta}, \hat{g})$ **Optimization** phase for k > 0 do Collect clicks  $c_i^k \sim \mathcal{B}(g_i(p_i^k, x_i^k))$  from users CTR  $y^k \leftarrow \frac{\sum_{i=\tau_i}^k c^i}{k-\tau_i+1}, \tau_i = (i-1)T < k$ Estimate opinions  $\hat{x}_i^{k+1} \leftarrow \hat{\beta}_i(y_i^k, p^k)$ if  $\zeta^k = 1$  then  $\mathcal{T} \leftarrow \operatorname{append}[k]$ Estimate sensitivity  $\hat{H}^k$ Estimate gradient Update positions  $p^{k+1}$ else  $\hat{H}^k \leftarrow \hat{H}^{k-1}$ ;  $p^{k+1} \leftarrow p^k$ end if



We ensure convergence by using the gradient mapping

$$\mathcal{G}(\boldsymbol{p}) := rac{1}{\eta} \Big( \boldsymbol{p} - \operatorname{proj}_{[-1,1]} [\boldsymbol{p} - \eta(\nabla \varphi)] \Big)$$

a common metric to quantify convergence in non convex-regimes.

#### OFO Convergence

Under all the previous assumptions, for  $\eta \in (0, \frac{1}{2(L')})$ ,  $\mu = \mu^*$ , the position sequence generated by the projected gradient descent algorithm satisfies

$$\frac{1}{|\mathcal{T}|} \sum_{\substack{l \in \mathcal{T} \\ l \leq k}} \mathbb{E}\Big[ \|\mathcal{G}(\rho')\|^2 \Big] \leq K_1, \quad \forall k \geq \mathcal{T}$$

 $\mathcal{K}_1 \propto \varphi(p^0, h(p^0, d)) - \varphi^*, \epsilon_x^2, \epsilon_g^2, L'^2, rac{1}{\eta^2}$ , gradient est. error





#### **Opinion Dynamics and Clicking Behaviour** Extended FJ model

$$x^{+} = (I - \Gamma_{p} - \Gamma_{d})Ax + \Gamma_{p}p + \Gamma_{d}d$$

Users follow two clicking behaviours

$$c_i \sim \mathcal{B}\left(\underbrace{\frac{1}{2} + \frac{1}{2}x_ip_i}_{C_a}\right), \quad c_i \sim \mathcal{B}\left(\underbrace{\frac{1}{2} + \frac{1}{2}e^{-c(x_i - p_i)^2}}_{C_b}\right)$$

we perform our algorithm over a network of 15 users, with  $C_a$  and  $C_b$  randomly distributed. Initial opinion  $\sim \mathcal{U}[-1,1]$ , A substochastic,  $d^k = x^0 + \text{noise}$ ,  $\Gamma_p \sim \mathcal{U}[10^{-2}, 0.5]$ 





**Training** We train the NN for opinion and clicking behaviour with horizon N = 100 and collect 75 data points, with trigger period T = 60, with the clicks being recorded in the interval [N - T, N]. We take m = 375 training and 125 testing points.

**Online** We set  $p^0 = 0$  (neutral recommendations). All simulations are conducted for  $N = 10^3$  over 50 Monte-Carlo trials.



| Method                         | Sensitivity | Opinions | Clicking behaviour |
|--------------------------------|-------------|----------|--------------------|
| $M_1$ (Oracle)                 | 1           | 1        | 1                  |
| $M_2$                          | X           | 1        | 1                  |
| <i>M</i> <sub>3</sub>          | X           | ×        | 1                  |
| <i>M</i> <sub>4</sub> (Alg. 1) | X           | X        | X                  |



### Trading off CTR and Polarization







### The Impact of the Network



ETH Zürich







#### Conclusions

- A Model-free recommender system algorithm that balances engagement maximization and polarization mitigation;
- Theoretical guarantees for CL stability;
- Validation on synthetic data

#### **Future Directions**

- Relax smoothness hypothesis on clicking behaviour;
- Consider other interests drivers than confirmation bias, e.g. repulsion.

#### Acknowledgements



ETH Zürich







#### Thanks for your attention





#### ${\sf Appendix}$





Sensitivity dynamics as a random process<sup>1</sup>:

$$\operatorname{vec}(\nabla_{\rho}h(\rho,d))^{+} = \operatorname{vec}(\nabla_{\rho}h(\rho,d)) + w$$
 Process model  
 $\Delta x_{ss}^{+} = \Delta \tilde{\rho} * \operatorname{vec}(\nabla_{\rho}h(\rho,d)) + v$  Measurement model

where

$$\Delta x_{ss}^{+} = h(p^{k}, d) - h(p^{k-1}, d)$$

$$w^{k} \sim \mathcal{N}(0, Q^{k})$$

$$v^{k} \sim \mathcal{N}(0, R^{k}), \text{ accounts for the external influence}$$

$$\Delta \tilde{p} = (p^{k} - p^{k-1})^{\top} \otimes I_{n}$$

Sensitivity and covariance updates:

$$\operatorname{vec}(\nabla_{p}h)^{k} = \operatorname{vec}(\nabla_{p}h)^{k-1} + \zeta^{k}(\mathcal{K}^{k-1}\Delta\hat{x}^{k+1} - \Delta\tilde{p}^{k}\operatorname{vec}(\nabla_{p}h)^{k-1})$$

$$\sum_{k=1}^{k} \sum_{k=1}^{k-1} + \zeta^{k}(Q^{k} - \mathcal{K}^{k-1}\Delta\tilde{p}^{k}\Sigma^{k-1})$$
are meanism: Enforces time-scale separation and ensures that a sufficient number of the second second

Trigger mecanism: Enforces time-scale separation and ensures that a sufficient number of clicks is collected (clicking ratio accuracy).

<sup>1</sup>Picallo, Ortmann, Bolognani, Dörfler, *Adaptive real time grid operation via online feedback optimization with sensitivity estimation* Electric Power Systems Research, 2022



**Note**: The CTR is recorded over a time horizon with constant p. The dynamics is exponentially stable: the opinion esitmate is close to the steady state opinion  $h(p, d) \rightarrow$  we can treat the opinion dynamics as a static map.

#### CL Convergence

Under all the previous assumptions, the sensitivity estimation error  $e^k := vec(h^k) - vec(\hat{h}^k)$  has bias and variance bounded in norm, with

$$\|\mathbb{E}[e^k]\| \leq J_1 \quad \mathbb{E}[\|e^k\|^2] \leq J_2$$

with  $J_1, J_2 \propto \epsilon_x, \frac{1}{T}$  and  $J_2 \propto \sigma_r^2$