
Unraveling the shape of networks with 
diffusion across scales

Alexis Arnaudon
EPFL



Introduction

This is a joint work with: Dr. Peach and Prof. Barahona at Imperial College London.

It has been published in three papers, some years ago:

[1] Peach, R. L., AA, & Barahona, M. (2020). Semi-supervised classification on graphs using explicit 
diffusion dynamics. Foundations of Data Science, 2(1), 19.

[2] AA, Peach, R. L., & Barahona, M. (2020). Scale-dependent measure of network centrality from diffusion 
dynamics. Physical Review Research, 2(3), 033104.

[3] Peach, AA, R. L., & Barahona, M. (2022). Relative, local and global dimension in complex networks. 
Nature Communications, 13(1), 1-11

Today I will show you what we did in this “trilogy” of papers



Recap on diffusion 

Continuous diffusion equation is:

Solution is given by the Green’s function, or heat kernel:

Solution for any initial condition is sum of Green functions on non-compact spaces, but tricks can 
be used on compact spaces (method of mirror, etc…)



On infinite line, it is simple, starting from a point mass:

Recap on diffusion 



At the origin of the diffusion, the mass monotonically decays:

Recap on diffusion 



Peak in transient response

For any other position, it does not, and shows a maximum:
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Recap on diffusion 



The amplitude and time of the peak depends on the distance to the source,
the further away from the source, the later and smaller the peak:

Peak in transient response
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Recap on diffusion 



On compact spaces, like interval, diffusion will look different:

Recap on diffusion 



Plateaus at some stationary 
state as time tends to infinity
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Recap on diffusion 
Near the source, we have the same behaviour as in infinite line,
as the walls are “far”:



Never exhibits any in transient 
response

Recap on diffusion 
But close to the boundary, we instead have monotonically increasing diffusion:

-> This change of behaviour of diffusion encodes information about the boundaries



Recap on graph theory and random walks 
• Incidence matrix:                                   if node I is head of edge (ij)

         
                                                              if node j is head of edge (ij)

• Adjacency matrix:                     if node i is connected to node j

We can form discrete random walk:

• Graph laplacian:

We can form continuous random walk:

i

j

ij



We can go from continuous space:

For an initial condition at node i, the solution at the node j is the heat kernel:

-> From these ‘diffusion trajectories’ on nodes, we can solve the heat equation and directly 
estimate peak time and amplitude, if it exists before a given “time horizon”.

From continuous diffusion to graph diffusion

to graphs: with graph Laplacian:

Discretising the previous example as a line graph will give the same results, but this diffusion 
equation works for any graph.



Given any initial condition (or node vector) on a graph and a diffusion-like process, we can 
compute for each node the time and amplitude of a ’transient peak’. With this information, 
we have three ‘options’:

1. Use amplitude: Graph Diffusion Reclassification [1]
2. Use time: Multiscale centrality [2]
3. Use time and amplitude: Network dimensionality [3]

How to use this observation to study graphs?

[1] Peach, R. L., AA, & Barahona, M. (2020). Semi-supervised classification on graphs using explicit 
diffusion dynamics. Foundations of Data Science, 2(1), 19.

[2] AA, Peach, R. L., & Barahona, M. (2020). Scale-dependent measure of network centrality from diffusion 
dynamics. Physical Review Research, 2(3), 033104.

[3] Peach, AA, R. L., & Barahona, M. (2022). Relative, local and global dimension in complex networks. 
Nature Communications, 13(1), 1-11



1. Using amplitude

Graph Convolutional Neural Network (GCN)

- takes a graph with node features and labels on subset of nodes
- Try to predict missing labels with two layers: 

It works by propagating feature signal through the graph with adjacency matrix and 
learning weights matrices to predict the labels.

The signal propagation is a one-step random walk, that can be extended with diffusion.
Instead, we use diffusion as a post processing step to “correct mistakes”.



Graph Diffusion Reclassification

Node classifier such as GCN provide probability 
distribution on nodes to belong to each class.

For each class, we diffuse these distributions, and 
reclassify a node if a transient peak in another class 
is largest.

We can improve classification accuracies:



Reclassifying the Cora dataset

Well classified node:

Reclassified node:

Diffusion of node classes:



2. Using time
Graph centrality measures:

There exists many measures assigning a number to each 
node, the higher the more ‘central’. 

Here are a few simple ones:
- Degree: the node degree (first order measure, the 

more connected locally the more central)

- Eigenvector: largest eigenvector of adjacency matrix 
(the higher the centrality if my neighbours also have 
high values)

- Betweenness: number of shortest pass passing by the 
node (how often a node is between any two other)

- Closeness: average length of shortest path with all 
others https://en.wikipedia.org/wiki/Centrality



We use the time of the transient response peak from a delta initial condition. 

We could expect that this time would provide a distance measure between two 
nodes, but diffusion on graphs is ’non-trivial’, and often breaks the triangle 
inequality:

We then count  the number of pairs of nodes that break the triangle 
inequality from source node, within a time horizon. 

The fraction of such pairs yields our notion of multiscale centrality, 
parametrized by the time horizon.

Multiscale Centrality



Multiscale centrality on the interval



Multiscale centrality on a graph



Comparison with other centrality measures



Uniform grid:

Delaunay mesh:

Uniform grid with mass:

Simple examples



More examples: European power grid and Manhattan road network 



3. Using time and amplitude

Short review on graph dimensions

- obvious for regular graphs (line 1d, grid 2d, etc…)

- In general, the ‘static’ definition is dimension of euclidean 
space to ‘draw’ the graph with edges of length = 1 

- A physics-based definition how a number of nodes in a 
ball of radius r increases with r:

Gábor and Szendrő (2004)



Finally, we use the time and amplitude of the transient peak to define notions of dimensions. 
Indeed, on Euclidean spaces, we can relate them with the dimension of the space.

From the Green function:

we have                               and

Which we can invert to get                                          and on graphs: 

For each pairs of nodes, we have a notion of relative dimension. We also have a 
multiscale nature if we restrict times below a time horizon.

By averaging across nodes j, we have local dimension, and across all nodes I and j, a 
global dimension.

Multiscale dimensionalities on graphs



Line and grid example



Some examples: ‘lensing’ effect



Some examples: protein structures



More protein structure example



Some examples: trade data and connetome

1994 world trade dataset

C. Elegans connectome



Some examples: ocean drifters



Summary

• Diffusion on networks is a powerful and versatile tool

• We have shown three ways to use it by only looking at the peak time/amplitude
• Node classification
• Multiscale centrality measures
• Multiscale network dimensions (relative, local and global)

• These can be generalised, as long as a notion of diffusion is well-defined. These 
may include: directed graphs, multilayer graphs, higher order (hypergraphs, 
simplicity complexes, etc…), etc…

• Codes to compute them are available on github:
• classification: https://github.com/barahona-research-group/GDR
• centrality: https://github.com/barahona-research-group/MultiscaleCentrality
• dimension: https://github.com/arnaudon/DynGDim

https://github.com/barahona-research-group/GDR
https://github.com/barahona-research-group/MultiscaleCentrality
https://github.com/arnaudon/DynGDim
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