Robin Delabays

robin.delabays@hevs.ch

www.DelabaysRobin.site

Net

 π School of Engineering

Locating the Source of Forced Oscillations in Transmission Power Grids

DOI: 10.1103/PRXEnergy.2.023009

People

Andrey Lokhov (LANL)

Melvyn Tyloo (LANL)

Marc Vuffray (LANL)

Ś
Ì

Power grid dynamics

$$m_j\ddot{ heta}_j + d_j\dot{ heta}_j = P_{\mathrm{m},j} - P_{\mathrm{e},j} = P_j - \sum_k B_{jk}\sin(heta_j - heta_k)$$

J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynamics, 2nd ed. (Wiley, Chichester, U.K, 2008).

Forced oscillations

https://www.youtube.com/watch?v=1vuxZJitEJg

Intuitive (but a bit naive) approach: ...

RD, A. Y. Lokhov, M. Tyloo, and M. Vuffray, Phys. Rev. X Energy 2, 023009 (2023).

Intuitive (but a bit naive) approach: the Fourier Transform

RD, A. Y. Lokhov, M. Tyloo, and M. Vuffray, Phys. Rev. X Energy 2, 023009 (2023).

Using the SALO algorithm

RD, A. Y. Lokhov, M. Tyloo, and M. Vuffray, Phys. Rev. X Energy 2, 023009 (2023).

Introduction 000	Source location ○○○●	Results 00000

SALO: System-Agnostic Location of Oscillations

Dynamics: $M\dot{\mathbf{p}} = D\mathbf{p} + B\mathbf{x} + \gamma \mathbf{e}_{\ell} \cos(2\pi ft + \phi) + \boldsymbol{\xi}.$

RD, A. Y. Lokhov, M. Tyloo, and M. Vuffray, Phys. Rev. X Energy 2, 023009 (2023).

Introduction 000	Source location ○○○●	Results 00000

SALO: System-Agnostic Location of Oscillations

Dynamics: $M\dot{\mathbf{p}} = D\mathbf{p} + B\mathbf{x} + \gamma \mathbf{e}_{\ell} \cos(2\pi ft + \phi) + \boldsymbol{\xi}.$

Discretized: $\Delta_{t_j} = A \mathbf{X}_{t_j} + \gamma \mathbf{e}_{\ell} \cos(2\pi k t_j / T + \phi) + \xi_j$.

RD, A. Y. Lokhov, M. Tyloo, and M. Vuffray, Phys. Rev. X Energy 2, 023009 (2023).

Introduction 000	Source location ○○○●	Results 00000

SALO: System-Agnostic Location of Oscillations

Dynamics: $M\dot{\mathbf{p}} = D\mathbf{p} + B\mathbf{x} + \gamma \mathbf{e}_{\ell} \cos(2\pi ft + \phi) + \boldsymbol{\xi}.$

Discretized:
$$\Delta_{t_j} = A\mathbf{X}_{t_j} + \gamma \mathbf{e}_{\ell} \cos(2\pi k t_j / T + \phi) + \xi_j$$
.

Least square error:

SALO:
$$\arg\min_{A,\gamma,k,\ell,\phi}\sum_{j=0}^{T-1} \left\|\boldsymbol{\Delta}_{t_j} - A\boldsymbol{X}_{t_j} - \gamma \boldsymbol{e}_\ell \cos(2\pi k t_j/T + \phi)\right\|^2.$$

... and a bit of work.

RD, A. Y. Lokhov, M. Tyloo, and M. Vuffray, Phys. Rev. X Energy 2, 023009 (2023).

Synthetic data

Multiple or hidden sources

Measurement data

M. Escobar, D. Bienstock, and M. Chertkov, in Proc. of the IEEE PowerTech (IEEE, Milano, Italy, 2019).

Measurement data (bis)

The University of Tennessee, Knoxville FNET Server Web Display, https://fnetpublic.utk.edu, accessed: 2022-11-6.

Introduction 000	Source location 0000	Results

Refinements to SALO

Relaxation of the amplitude vector:

SALO-relax:
$$\arg\min_{A, \gamma, k, \phi} \sum_{j=0}^{T-1} \left\| \boldsymbol{\Delta}_{t_j} - A \mathbf{X}_{t_j} - \gamma \cos(2\pi k t_j / T + \phi) \right\|^2$$

Use of prior information.

Refinements to SALO

Relaxation of the amplitude vector:

SALO-relax:
$$\arg\min_{A,\gamma,k,\phi}\sum_{j=0}^{T-1} \left\| \boldsymbol{\Delta}_{t_j} - A \mathbf{X}_{t_j} - \gamma \cos(2\pi k t_j/T + \phi) \right\|^2$$

Use of prior information.

Thank you!

robin.delabays@hevs.ch

www.DelabaysRobin.site

Opimization landscape

1.5

1.0

-1.5

0.0

2.0

6.0

t [s]

8.0

10.0

4.0

Complex cases

00000

Complex cases

Informed SALO

Informed SALO-relax

