Bounding the destabilization time in networks of coupled noisy oscillators

Robin Delabays

robin.delabays@hevs.ch

M. Tyloo, R. D., and Ph. Jacquod, arXiv preprint 1812.09497 (2018)

Where is HES-SO?

Conclusion 00

Where is HES-SO?

Noisy power injection

Questions

How likely is it for a system to lose synchrony?

Can we quantify this probability?

What are the relevant parameter of the fluctuations?

Conclusion 00

The model – the oscillators

Lossless line approximation of the Swing Equations.

The 2nd order Kuramoto model:

$$m \cdot \ddot{ heta}_i + d \cdot \dot{ heta}_i = P_i(t) - \sum_{j=1}^n b_{ij} \sin(heta_i - heta_j).$$

- ▶ $\theta_i \in \mathbb{S}^1$: voltage angle / oscillator's phase,
- ▶ *m*, *d*: inertia and damping,
- ▶ $P_i \in \mathbb{R}$: power injection / natural frequency,
- ► *b_{ij}*: weighted adjacency matrix.

Conclusion 00

The model – the oscillators

Lossless line approximation of the Swing Equations.

The 2nd order Kuramoto model:

$$m \cdot \ddot{ heta}_i + d \cdot \dot{ heta}_i = P_i(t) - \sum_{j=1}^n b_{ij} \sin(heta_i - heta_j).$$

- ▶ $\theta_i \in \mathbb{S}^1$: voltage angle / oscillator's phase,
- ▶ *m*, *d*: inertia and damping,
- ▶ $P_i \in \mathbb{R}$: power injection / natural frequency,
- ► *b_{ij}*: weighted adjacency matrix.

Synchrony?

Introduction	Model and properties	Escape	Conclusion
000	00000	00000000000000000	00

Basins of attraction

$$\mathcal{B}_{\theta^*} \coloneqq \{\theta^\circ \in \mathbb{T}^n : \ \theta(0) = \theta^\circ \implies \theta(t \to \infty) = \theta^*\} \;.$$

Introduction	Model and properties	Escape
000	00000	000000000000000000000000000000000000000

Basins of attraction

$$\mathcal{B}_{\theta^*} \coloneqq \{\theta^\circ \in \mathbb{T}^n : \ \theta(0) = \theta^\circ \implies \theta(t \to \infty) = \theta^*\} \;.$$

Conclusion 00

The model – the network

The model – the network

Consider a synchronous state $\theta^{(0)} \in \mathbb{T}^n$ We define the weighted Laplacian (Jacobian),

$$\mathcal{L}_{ij} := \begin{cases} -b_{ij} \cos\left(\theta_i^{(0)} - \theta_j^{(0)}\right), & i \neq j, \\ \sum_{k \neq i} b_{ik} \cos\left(\theta_i^{(0)} - \theta_k^{(0)}\right), & i = j. \end{cases}$$

I

The model – the network

Consider a synchronous state $\theta^{(0)} \in \mathbb{T}^n$ We define the weighted Laplacian (Jacobian),

$$\mathcal{L}_{ij} := \begin{cases}
-b_{ij} \cos\left(\theta_i^{(0)} - \theta_j^{(0)}\right), & i \neq j, \\
\sum_{k \neq i} b_{ik} \cos\left(\theta_i^{(0)} - \theta_k^{(0)}\right), & i = j.
\end{cases}$$

Eigen decomposition:

$$\begin{split} \lambda_1 &= 0 < \lambda_2 \leq \ldots \leq \lambda_n \\ \mathbf{u}_1 &\sim (1, \ldots, 1) \,, \qquad \qquad \mathbf{u}_\alpha \perp \mathbf{u}_1 \,, \ \alpha \geq 2 \end{split}$$

M. Tyloo, T. Coletta, and Ph. Jacquod, *Phys. Rev. Lett.* **120** (2018).
 M. Tyloo, L. Pagnier, and Ph. Jacquod, *arXiv preprint* **1810.09694** (2018).

Conclusion 00

The model – the noise

We consider noisy power injections,

$$P_i(t) \coloneqq P_i^{(0)} + \delta P_i(t) \,,$$

such that

$$\left\langle \delta P_i(t) \cdot \delta P_j(t') \right\rangle = \delta_{ij} \cdot \delta P_0^2 \cdot \exp(-|t-t'|/\tau_0),$$

where $\tau_0 > 0$ is the correlation time.

Conclusion 00

The model – the noise

We consider noisy power injections,

$$P_i(t) \coloneqq P_i^{(0)} + \delta P_i(t),$$

such that

$$\left\langle \delta P_i(t) \cdot \delta P_j(t') \right\rangle = \delta_{ij} \cdot \delta P_0^2 \cdot \exp(-|t-t'|/\tau_0),$$

where $\tau_0 > 0$ is the correlation time.

Simulations: We construct a Gaussian noise with correlation time τ_0 .

Introduction	Model and properties	Escape	Conclusi
000	00000●	000000000000000000000000000000000000	00

Three time scales

Introduction 000	Model and properties 00000●	Escape 000000000000000000000000000000000000	Conclusion 00

Three time scales

Oscillators: $\frac{m}{d}$,

Introduction 000	Model and properties 00000●	Escape 000000000000000000000000000000000000	Conclusion 00

Three time scales

Introduction 000	Model and properties	Escape • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Conclusion

We define the angle deviation $heta(t)= heta^{(0)}+\delta heta(t)$,

Introduction 000	Model and properties	Escape •000000000000000000000000000000000000	Conclusion 00

We define the angle deviation $\theta(t) = \theta^{(0)} + \delta \theta(t)$, and linearize the dynamics

$$m\ddot{\delta} heta_i + d\dot{\delta} heta_i = P_i^{(0)} + \delta P_i(t) - \sum_j b_{ij}\sin(heta_i^{(0)} + \delta heta_i - heta_j^{(0)} - \delta heta_j).$$

Introduction 000	Model and properties	Escape ○●○○○○○○○○○○○○○○○	Conclusion 00

We define the angle deviation $\theta(t) = \theta^{(0)} + \delta \theta(t)$, and linearize the dynamics

$$m\ddot{\delta heta} + d\dot{\delta heta} pprox \delta {f P}(t) - {\Bbb L}({ heta}^{(0)}) \delta {m heta}$$
 .

Introduction 000	Model and properties	Escape 000000000000000000000000000000000000	Conclusion 00

We define the angle deviation $\theta(t) = \theta^{(0)} + \delta \theta(t)$, and linearize the dynamics

$$m\ddot{\delta heta} + d\dot{\delta heta} pprox \delta \mathbf{P}(t) - \mathbb{L}(m{ heta}^{(0)}) \delta m{ heta}$$
 .

Expanding on the eigenmodes and taking $t \to \infty$,

$$\langle \delta \boldsymbol{\theta}^2 \rangle = \left\langle \left(\sum_{\alpha} c_{\alpha} \mathbf{u}_{\alpha} \right)^2 \right\rangle = \delta P_0^2 \sum_{\alpha \ge 2} \frac{\tau_0 + m/d}{\lambda_\alpha \left(\lambda_\alpha \tau_0 + d + m/\tau_0 \right)}$$

Typical distance from the sync state after a long time:

$$\delta P_0^2 \sum_{\alpha \ge 2} \frac{\tau_0 + m/d}{\lambda_\alpha \left(\lambda_\alpha \tau_0 + d + m/\tau_0\right)}$$

Typical distance from the sync state after a long time:

$$\delta P_0^2 \sum_{lpha \ge 2} rac{ au_0 + m/d}{\lambda_lpha \left(\lambda_lpha au_0 + d + m/ au_0
ight)}.$$

Can we derive a condition for loss of synchrony?

Escape from the basin

Potential:

$$\mathcal{V}(oldsymbol{ heta}) = -\sum_i \mathcal{P}_i heta_i + \sum_{i < j} b_{ij} \left(1 - \cos(heta_i - heta_j)
ight) \,.$$

Escape from the basin

Potential:

$$V(oldsymbol{ heta}) = -\sum_i P_i heta_i + \sum_{i < j} b_{ij} \left(1 - \cos(heta_i - heta_j)
ight) \,.$$

Almost surely, escape occurs through a 1-saddle φ , of the noiseless system.

ntroduction	Model and properties	Escape 000000000000000000000000000000000000	Conclusion 00

Idea

For given network and noise, compare:

Introduction	Model and properties	Escape	Conclusion
000		000000000000000000000000000000000000	00

Idea

For given network and noise, compare:

The typical excursion:

$$\delta P_0^2 \sum_{lpha \ge 2} rac{ au_0 + m/d}{\lambda_lpha \left(\lambda_lpha au_0 + d + m/ au_0
ight)};$$

Introduction	Model and properties	Escape	Conclusion
000		0000000000000000	00

Idea

For given network and noise, compare:

The typical excursion:
$$\delta P_0^2 \sum_{\alpha \ge 2} \frac{\tau_0 + m/d}{\lambda_\alpha \left(\lambda_\alpha \tau_0 + d + m/\tau_0\right)}$$
;

and the distance Δ to the closest 1-saddle.

 Conclusion 00

Cycle network,
$$n = 83$$
, $P_i^{(0)} \equiv 0$, $m = 0$

Distance between stable sync state $heta^{(0)}$ and the closest 1-saddle $\varphi^{(1)}$ is

$$\|\boldsymbol{\theta}^{(0)} - \boldsymbol{\varphi}^{(1)}\|_2^2 = \frac{n(n^2 - 1)}{12(n - 2)^2} \pi^2 =: \Delta.$$

L. DeVille, Nonlinearity 25 (2012).

R. D., M. Tyloo, and Ph. Jacquod, Chaos 27 (2017).

 Conclusion 00

Cycle network, n = 83, $P_i^{(0)} \equiv 0$, m = 0

$$\delta P_0^2 \sum_{\alpha \ge 2} \frac{ au_0}{\lambda_\alpha \left(\lambda_\alpha au_0 + d\right)} = \Delta^2 \,.$$

 Conclusion 00

Cycle with 3rd neighbor, n = 83, $P_i^{(0)} \equiv 0$, m = 0

How can we determine Δ for arbitrary network.

L. DeVille, Nonlinearity 25 (2012).

000 0000	000	000000000000000000000000000000000000000	00

Locate a candidate $heta^\circ \longrightarrow$ initial conditions.

L. DeVille, Nonlinearity 25 (2012).

Introduction 000	Model and properties	Escape 00000000000000000	Conclusion 00

Locate a candidate $heta^\circ \longrightarrow$ initial conditions.

Newton-Raphson:
$$0 = P_i^{(0)} - \sum_j b_{ij} \sin(heta_i - heta_j)$$
 gives $oldsymbol{ heta}^*.$

L. DeVille, Nonlinearity 25 (2012).

Introduction 000	Model and properties	Escape 00000000000000000	Conclusion 00

Locate a candidate $heta^\circ \longrightarrow$ initial conditions.

Newton-Raphson:
$$0 = P_i^{(0)} - \sum_j b_{ij} \sin(heta_i - heta_j)$$
 gives $oldsymbol{ heta}^*.$

Check eigenvalues of $\mathbb{L}(\theta^*)$.

L. DeVille, Nonlinearity 25 (2012).

 Conclusion 00

Cycle with 3rd neighbor, n = 83, $P_i^{(0)} \equiv 0$, m = 0

Unique significant 1-saddle.

 Conclusion 00

Cycle with 3rd neighbor, n = 83, $P_i^{(0)} \equiv 0$, m = 0

 Conclusion 00

UK network, n = 120, $P_i^{(0)} \equiv 0$, m = 0

 Conclusion 00

UK network,
$$n = 120$$
, $P_i^{(0)} \equiv 0$, $m = 0$

 Conclusion

Small world, n = 200, $P_i^{(0)} \equiv 0$, m = 0

 Conclusion

Small world, n = 200, $P_i^{(0)} \equiv 0$, m = 0

 Conclusion

The effect of inertia Cycle with 3rd neighbor.

 Conclusion 00

The effect of inertia Cycle with 3rd neighbor.

Inertia seems not to stabilize the system!

Introduction	Model and properties	Escape	Conclusion
000	000000	000000000000000000000000000000000000000	00

The effect of inertia Cycle with 3rd neighbor.

Inertia seems not to stabilize the system! Not always at least.

Escape 000000000000000000000 Conclusion

Superexponential escape time Cycle, n = 83.

Conclusion

Superexponential escape time

Cycle, *n* = 83.

Superexponential escape time

Cycle, *n* = 83.

$$T_{
m esc} \propto \left[2 \int_{eta \Delta}^{\infty} P(\overline{\delta heta}) d(\overline{\delta heta})
ight]^{-1}$$

Conclusion

- Qualitatively describe the boundary between stable and unstable parameter regions;
- Inertia does not stabilizes the network (in this setting);
- ► Numerical method to locate 1-saddles.

Conclusion

- Qualitatively describe the boundary between stable and unstable parameter regions;
- Inertia does not stabilizes the network (in this setting);
- ► Numerical method to locate 1-saddles.

Further work:

- Plug in "real-life" parameters;
- Quantify the precision of our prediction.

Thank you!

The 1-saddles for the cycle with $3^{\mbox{\scriptsize rd}}$ neighbor

Inertia 2

Cycle, n = 83, m/d = 10, and $d/\lambda_2 = 175$.

Multistability

R. D., T. Coletta, and Ph. Jacquod, J. Math. Phys. 57 (2016)
 R. D., T. Coletta, and Ph. Jacquod, J. Math. Phys. 58 (2017)