
Bounding the desynchronization time in
electrical grids under fluctuating sources

M. Tyloo,1,2 R. Delabays,1,3 and Ph. Jacquod1,4

1 University of Applied Sciences of Western Switzerland, 2 École Polytechnique Fédérale de Lausanne (EPFL),
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Motivation

Renewable energy sources are scattered and fluctuating. Their increasing penetration places the

issue of electrical grid stability in the wider problem of stability of noisy coupled dynamical

systems,

{electrical grid stability} ⊂ {perturbed dynamical systems} .

We assess the time needed for a dynamical system to be destabilized, based on the noise’s parameters.

In our approach, a larger amount of inertia in the system does not stabilize it.

Escape time

According to DeVille [2],

escapes from a basin of attraction occur in a neighborhood of a 1-saddle ϕ

of the dynamics Eq. (†).

Defining λα and uα the eigenvalues and eigenvectors of L, one can solve Eq. (‡) [1], and compare

the long time behavior of the angle displacements with the distance ∆ := ‖θ(0) −ϕ‖2,
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giving an estimate of the parameter domain where the system is unlikely to be destabilized. The

long time typical excursion size depends on the three time scales
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m

d
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d
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.

Simulations of Eq. (†) with m = 0 were performed for a range of values for δP0 and τ0, recording

the number of them that escaped the initial basin of attraction after a given number of iterations

Tobs. The noise sequences δPi(t) were generated.

The parameter space is then splitted in a region U where all simulations escape and a region S

where all simulations remain in the basin.

The criterion Eq. (§) gives a good parametric estimate of the boundary

between the regions U and S.

Remarkably, the following asymtotics does not depend on inertia,
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The networks considered are:
C1 – The cycle of length n = 83 vertices;

C3 – The cycle with first- and third-neighbors with n = 83 vertices;

UK – The UK transmission network composed of n = 120 vertices and 165 edges;

SW – A small world network with n = 200 vertices.

Remark.The value of ∆ is obtained analytically for the cycle C1 and estimated numerically for

C3, UK, and SW, see [3] for more details.
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The model

We consider the second-order system of n coupled oscillators, which represent the swing equations

in the lossless line approximation,

mθ̈i + dθ̇i = Pi(t)−
n∑
j=1

bij sin (θi − θj) , (†)

• θi ∈ (−π, π], i = 1, ..., n, are the oscillators angles;

• m, d are respectively the inertia and damping of each oscillator;

• Pi(t), i = 1, ..., n, are the time-varying natural frequencies, or power injections/consumptions;

• bij are the elements of the weighted adjacency matrix of the interconnection graph.

Decomposing P = P (0) + δP (t) and θ = θ(0) + δθ(t) and linearizing Eq. (†), one gets

mδθ̈ + dδθ̇ = δP − L
(
{θ(0)

i }
)
δθ , where Lij =

{
−bij cos(θi − θj) , i 6= j ,∑

k 6=i cos(θi − θk) , i = j ,
(‡)

is a weighted Laplacian matrix.

We apply an additive random colored noise to all natural frequencies,

〈δPi(t) · δPj(t′)〉 = δij · δP 2
0 · e−|t−t

′|/τ0 ,

with δP0 the noise’s amplitude and τ0 the decorrelation time. The noise is time-correlated and

independent in space.

Superexponential escape time

Increasing the observation time Tobs, we see the number of escape increasing.

Fixing τ0 = 1.5, we observe (blue circles) that the escape time increases superexponentially as δP0

is decreased.

This fact is explained by observing that after a long enough time, the angle deviations δθi follow

a normal distribution N (0, σ̄). Large excursions leading to basin escapes are then rare events,

appearing in the distribution tails. The time needed to see such large excursion is estimated as

Tesc ≈
[

2

∫ ∞
β∆

P(δ̄θ)d(δ̄θ)

]−1

,

which is superexponential (red crosses).

Inertia

Comparing the cases m > 0 and m = 0, our analytical prediction and the simulations both conclude

that inertia almost always destabilizes the system.

In the context of electrical network, however, the value of τ0 is very large compared to the time scales

of the network. Such system then evolves in a parameter region where the difference is negligible.

Conclusion

We proposed a method to assess the time needed for a system to leave its basin of attraction. This

criterion is efficient to compute as it mainly relies on the inversion of a Laplacian matrix.

Under our assumptions, for a sufficiently long time, any system ends up escaping its basin. But the time

needed for this increases superexponentially, exceeding any realistic time for any practical application.

Contact: melvyn.tyloo@hevs.ch, robin.delabays@hevs.ch, philippe.jacquod@hevs.ch

Website: etranselec.ch


