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Motivation

OFEN, Statistique Suisse de l’électricité 2018.
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Motivation

What is the impact of a given contingency?

What are the critical elements in a grid?

How to identify (efficiently) critical operating states?
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The Swing Equations

We consider:

mi θ̈i + di θ̇i = Pi −
∑
j

bij(θi − θj) , i ∈ {1, ..., n} ,

mi : inertia, di : damping, bij : susceptance, Pi : generation/load.

Mθ̈ + Dθ̇ = P− Lθ ,

M = diag(m), D = diag(d), L Laplacian matrix.

Shorthand notation: ωi := θ̇i .

A. R. Bergen and V. Vittal, Power System Analysis (Prentice Hall, 2000).

5 / 13



Introduction Contingencies and measures Line contingencies and RoCoF Conclusion

The Swing Equations

We consider:

mi θ̈i + di θ̇i = Pi −
∑
j

bij(θi − θj) , i ∈ {1, ..., n} ,

mi : inertia, di : damping, bij : susceptance, Pi : generation/load.

Mθ̈ + Dθ̇ = P− Lθ ,

M = diag(m), D = diag(d), L Laplacian matrix.

Shorthand notation: ωi := θ̇i .

A. R. Bergen and V. Vittal, Power System Analysis (Prentice Hall, 2000).

5 / 13



Introduction Contingencies and measures Line contingencies and RoCoF Conclusion

The Swing Equations

We consider:

mi θ̈i + di θ̇i = Pi −
∑
j

bij(θi − θj) , i ∈ {1, ..., n} ,

mi : inertia, di : damping, bij : susceptance, Pi : generation/load.

Mθ̈ + Dθ̇ = P− Lθ ,

M = diag(m), D = diag(d), L Laplacian matrix.

Shorthand notation: ωi := θ̇i .

A. R. Bergen and V. Vittal, Power System Analysis (Prentice Hall, 2000).

5 / 13



Introduction Contingencies and measures Line contingencies and RoCoF Conclusion

Analytical solution

Assume mi ≡ m, di ≡ d , and consider angle deviations

δθ(t) = θ(t)− θ∗ , θ∗ = L†P0 , P(t) = P0 + δP(t) .

mδ̈θ + d δ̇θ = δP(t)− Lδθ .

Expanding on the eigenmodes of L:

Lu(α) = λαu(α) , δθ(t) =
n∑

α=1

cα(t)u(α) .

M. Tyloo and P. Jacquod, Phys. Rev. E 100 032303 (2019).
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Analytical solution

Assume mi ≡ m, di ≡ d , and consider angle deviations

δθ(t) = θ(t)− θ∗ , θ∗ = L†P0 , P(t) = P0 + δP(t) .

mc̈α(t) + dċα(t) = δP(t) · u(α) − λαcα(t) , α = 1, ..., n .

Analytical solution:

cα(t) = m−1e−(γ+Γα)t/2

∫ t

0
eΓαt1

∫ t1

0
δP(t2) · u(α)e(γ−Γα)t2/2dt2dt1 .

M. Tyloo and P. Jacquod, Phys. Rev. E 100 032303 (2019).
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Contingencies

Swing Equations, i ∈ {1, ..., n}:

Mθ̈ + Dθ̇ = P− Lθ .

Nodal perturbations: additive, P→ P + δP.

Line perturbations: multiplicative, L→ L− βeije
>
ij .
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Measures of the impact

Transmission losses: L2-norm of
angle deviations.

∫ ∞
0
δθ2(t)dt

E. Tegling, B. Bamieh, and D. F. Gayme, IEEE Trans. Control Netw. Syst. 2 254 (2015).

T. W. Grunberg and D. F. Gayme, IEEE Trans. Control Netw. Syst. 5, 456 (2018).

B. K. Poolla, S. Bolognani, and F. Dörfler, IEEE Trans. Autom. Control 62 6209 (2017).

F. Paganini and E. Mallada, Proc. of the 55th ACCC (2017).

T. Coletta and P. Jacquod, IEEE Trans. Control Netw. Syst. Early access (2019).
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Measures of the impact

Transmission losses: L2-norm of
angle deviations.

Primary control effort: L2-norm
of frequency deviations.

Nadir: L∞-norm of frequency de-
viations.

RoCoF: L∞-norm of the time
derivative of the frequency. sup

t
|ω̇(t)|

E. Tegling, B. Bamieh, and D. F. Gayme, IEEE Trans. Control Netw. Syst. 2 254 (2015).
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The RoCoF

Maximal local RoCoF:

RoCoF = max
i
‖ω̇i (t)‖∞ .

RoCoF is maximal at t = 0+.

ω(0) = 0 , P = L θ(0) , L∗ = L− bijeije
>
ij ,

Mω̇(0) + Dω(0) = P− L∗θ(0) ,

=⇒ ω̇k = (δik − δjk)
bij(θi − θj)

mk
. → RoCoF at nodes i and j .
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Numerics (IEEE 118-Bus)
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Numerics (IEEE 118-Bus)

Black line: theory.
x: 100% inertia at loads, RoCoF at all nodes.
x: 100% inertia at loads, RoCoF at generators only.
x: 1% inertia at loads, RoCoF at generators only.
x: 0% inertia at loads, RoCoF at generators only.
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Including uncertainties
Statistics on generation and loads:

E [Pk ] = µk , E [(Pk − µk)(P` − µ`)] = Πk` .

One gets:

E(ω̇i ) =
bij
mi

e>ij L†µ , var(ω̇i ) =
b2
ij

m2
i

e>ij L†ΠL†eij .
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Conclusion
The RoCoF after a line loss is:

I proportional to the flow on the line;

I inversely propotional to the inertia of the node where it is
measured.

If we have only statistics on the power injections, we derive
statistics on the RoCoFs.

Consequences:

I The most loaded lines are the most critical (expected);

I Less inertia means more critical systems, but...

Caveat: We assume inertia at every nodes, which is not true
(yet...).
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Exploratory Workshop Speakers:
Michael Bronstein (Imperial College)
Moon Duchin* (Tufts)
Elisenda Feliu (Copenhagen)
Kathryn Hess-Bellwald (EPFL)
Philippe Jacquod (HES-SO Valais)
Ioan Manolescu (Fribourg)
Toshiyuki Nakagaki (Hokkaido)
Alan Newell (Tucson)
Gerd Schröder-Turk (Murdoch Perth)
                                                                    * to be confirmed
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