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Motivation

It is known since the work of Korsak [1] that stable equilibria of the
Swing Equations differ by loop flows. Linear stability of these fixed
points have been extensively investigated through Lyapunov exponents.
We explore the basins of attraction of fixed points of the Kuramoto
model with cyclic interactions describing the behavior of n nonlinearly
coupled oscillators

θ̇i = Pi −K sin(θi − θi−1)−K sin(θi − θi+1) , (1)

i = 1, ..., n, where

θi ∈ R , K > 0 ,
∑
i

Pi = 0.

Stable fixed points of Eq. (1) are characterized by their integer winding number

q =
1

2π

n∑
i=1

∆i,i+1 ∈ Z , ∆i,i+1 := [θi − θi+1 (mod 2π)] . (2)

Wiley et al. [2]: The relation between an
equilibrium’s winding number and the volume of its
basin of attraction is Gaussian (red dots).

But: Initial and final winding numbers are cor-
related (correlation coefficient 0.47).

As the state space has high dimensional-
ity, a very large number of initial conditions
is then necessary to cover the whole state space
[(2π/0.5)80 ≈ 1088].

We propose a new method to assess the basins
of attraction’s volumes.

Identical frequencies: Analytical approach

In the case of identical frequencies (Pi ≡ 0), we observed that a stable fixed point ~θ(q) and a p-saddle

~ϕ(q′) are the closest if q = q′ and p = 1.

For identical frequencies, a fixed point has to satisfy

∆i,i+1 = ∆i−1,i or ∆i,i+1 = ±π −∆i−1,i .

Together with Eq. (2), it implies that the angle vectors are

θ
(q)
i = π

[
2q

n
i− n− 1

n
q

]
, ϕ

(q)
i = π

[
2q − 1

n− 2
i +
−2n2k + 2nk − 8qk − n

2n(n− 2)
+

6nq ± (4nq − n2)

2n(n− 2)

]
.

This gives

‖~θ(q) − ~ϕ(q)‖∞ =
(n− 1)(n− 4q)

2(n− 2)n
π ,

which, for large n, behaves as

‖~θ(q) − ~ϕ(q)‖∞ ∼
(

1− 4q

n

)
.

The volume of the corresponding n-sphere is then

Vq ∼
(

1− 4q

n

)n
n→∞−−−−−−−→ exp(−4q) .

Non-identical frequencies

For non-identical frequencies (Pi 6= 0), we observe
that the radius of the basin of attraction for small
winding numbers is preserved. It drops and van-
ishes for larger winding numbers as the magnitude
of the frequencies is increased.

Non-zero frequencies is equivalent to a tilting of the
Lyapunov function of the system Eq. (1),

V(~θ) = −
∑
i

Piθi −
∑
i<j

Kij cos(θi − θj) ,

and the size of the basins of attraction does not
change much before it vanishes.
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Identical frequencies: Numerical approach

We perform a numerical estimation of the radius of the basin of attraction. We choose d = 1000
random perturbation directions ~εj, j = 1, ..., d and define

~ηq,j,α := ~θ(q) + πα ~εj ,

where α ∈ [0, 1] is a tuning parameter. Increasing α, we compute

pq(α) :=
1

d
Card

{
~ηq,j,α | ~θ(0) = ηq,j,α, ~θ(t→∞) = ~θ(q)

}
.

Given a threshold τ ∈ [0, 1], we can then define

ατ (q) := sup{α | pq(α) ≥ τ} ,

as a typical radius of the basin of attraction.

The linear dependence of the radius of the
basin of attraction with respect to the winding
number is confirmed.

It differs from the Gaussian behavior reported by
Wiley et al. [2].
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We estimate the radius of the basins of attraction of the fixed points with various winding numbers
on the large middle cycle (nr. 1), and fixed winding numbers on the other cycles.

We observe that changing the sign of all winding numbers does not change the radius of the basin
of attraction.

The winding number on cycle close to the middle one influences the size of the basins of attraction
much more than the winding number on cycles far appart.
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