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Multistability and Loop Flows

Theorem:The Lossless AC Power Flows on meshed networks may
have multiple stable fixed points whose differences are collections
of Loop Flows.
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Multistability and Loop Flows

How many?

J. Casazza, Electrical World (1998)

E. J. Lerner, The Industrial Physicist 9 (2003)

3 / 14



Loop Flows and the Number of Power Flow Solutions in Meshed Electric Power Grids

The Starting Point

The Lossless AC Power Flow Equations: ∀i = 1, ..., n

Pi =
n∑

j=1

|Vi ||Vj |Bij︸ ︷︷ ︸
K

sin(θi − θj) ,

G = 0 and |Vi | ≡ V ,

Consider identical coupling: K := V 2Bij ,

where

I Pi : active power at bus i ;

I |Vi |, θi : voltage amplitude and phase at bus i ;

I Bij : susceptance of the line between buses i and j .
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The Starting Point

We end up with: Pi =
∑
j∼i

K sin(θi − θj) ,

Pi , K : parameters,
θi : unknowns.

Fixed point of the Swing Equations:

θ̇i = Pi −
∑
j∼i

K sin(θi − θj) ,

with identical damping and no intertia.

Angles differences: < π/2 or > π/2 =⇒ N ∼ 2#edges.

D. Mehta, H. Nguyen, and K. Turistyn, IET Gen. Trans. & Dist. 10 (2016)
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Stability

A fixed point {θ∗i } of θ̇i = Pi −
∑
j∼i

K sin(θi − θj) ,

is linearly stable if and only if the stability matrix M defined as

Mij :=


−
∑
k∼i

K cos(θ∗i − θ∗k) , if i = j ,

K cos(θ∗i − θ∗j ) , if i ∼ j ,

0 , otherwise.

is negative semi-definite.

0 = λ1 > λ2 ≥ ... ≥ λn .

Note: inertia does not discard stability.

D. Manik et al., Eur. Phys. J. 223 (2014)

T. Coletta and P. Jacquod, Phys. Rev. E 93 (2016)
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Discretization of loop flows

Pij = P∗ij + Kε := K sin(θi − θj)

⇐⇒ |θi − θj |2π = arcsin(P∗ij/K + ε) .

Voltage angles are uniquely defined:

Vj = Ve iθj ,

→ Winding Number: qk ∈ Z

A(ε) :=

nk∑
i=1

|θi − θi+1|2π =

nk∑
i=1

arcsin(P∗i ,i+1/K + ε) = 2πqk .

=⇒ There is a discrete number of possible loop flows.
But how many?
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One cycle - P ≡ 0 (i.e. K →∞)

Identical flow on the lines:

−1 ≤ ε ≤ 1 .

Identical angle differences on the lines:

−π/2 ≤ arcsin(ε) ≤ π/2 .

Discretization:

n · arcsin(ε) = 2πq , q ∈ Z ,

=⇒ q ∈ {−Int(n/4), ..., Int(n/4)} ,

=⇒ N = 2 · Int(n/4) + 1
(
6= 2 · Int ((n − 1)/4) + 1

)
.

R. Delabays, T. Coletta, and P. Jacquod, J. Math. Phys. 57 (2016)

D. Manik, M. Timme, and D. Witthaut, arXiv 1611.09825 (2017)
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One cycle - P ≡ 0 (i.e. K →∞)

−π/2 ≤ |θi − θi+1|2π ≤ π/2

|θi − θi+1|2π ∈ {arcsin(ε), π − arcsin(ε)} =⇒ cos(θi − θi+1) = ±c

If |θi−1 − θi |2π = π − arcsin(ε) and |θi − θi+1|2π = arcsin(ε),

−M = K



. . .
. . .

. . . x c 0
c 0 −c

0 −c y
. . .

. . .
. . .


,

∣∣∣∣x c
c 0

∣∣∣∣ = −c2 ,

negative principal minor

Sylvester’s criterion =⇒ M is not NSD =⇒ unstable (λ2 > 0).
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One cycle - P 6= 0 (i.e. K <∞)

Decrease K =⇒ N ≤ 2 · Int(n/4) + 1
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One cycle - P 6= 0
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R. Delabays, T. Coletta, and P. Jacquod, J. Math. Phys. 57 (2016)
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Planar networks - P ≡ 0

Conjecture: N ≤
c∏

k=1

[
2 · Int

(
(nk + n′k)/4

)
+ 1
]
.

R. Delabays, T. Coletta, and P. Jacquod, to appear in J. Math. Phys. (2017)
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Planar networks

120 nodes, 165 lines, 45 cycles, K = 13
10 producers: P = +11α,
110 consumers: P = −α
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c∏
k=1

[
2 · Int

(
(nk + n′k)/4

)
+ 1
]
≈ 1.475 · 1027
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Conclusion

Conclusions:
I Multistability occurs in the models used to describe the

electrical grid;
I Fixed points differ by a collection of Loop Flows;

I N ≤
c∏

k=1

[2 · Int (nk/4) + 1] .

Further questions:
I Non-zero injections on planar graph: No proof yet!
I Consider dissipation;
I Can we observe non-zero winding numbers in real-life data?

Thank you!
14 / 14


