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Motivation

Electrical network

Source: Swissgrid

A graph with:
I n vertices (buses) characterized by a voltage: |Vj |e iθj ,
I m edges (lines) with admittance: Yjk = Gjk + iBjk .
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The model

Power Flow Equations: for all i = 1, ..., n

Pi =
n∑

j=1

|Vi ||Vj | [Bij sin(θi − θj) + Gij cos(θi − θj)] ,

Qi =
n∑

j=1

|Vi ||Vj | [Gij sin(θi − θj)− Bij cos(θi − θj)] .

High voltage networks, ∀i , j :

Gij ≈ 0 and |Vi | ≈ |V | .

Other assumption, ∀〈i , j〉:

Kij := |V |2Bij = K .

A. R. Bergen and V. Vittal, Power Systems Analysis (2000)
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The model

We obtain the following reduced Power Flow Equations:

Pi =
∑
j∼i

K sin(θi − θj) ∀i .

We denote the transmitted power on line 〈ij〉:

I〈ij〉 = K sin(θi − θj) = K sin(∆ij), ∆ij ∈ (−π, π]

Kirchhoff’s Current Law (KCL):

Pi =
∑
j∼i

I〈ij〉
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Stability

Dynamics are given by the Swing Equations, which reduce here
to the Kuramoto model:

θ̇i = Pi −
∑
j∼i

K sin(θi − θj) .

For a given solution {θ(0)
i }, linear stability is given by the

eigenvalues of the stability matrix:

Mij :=

 K cos(θ
(0)
i − θ

(0)
j ) , if i 6= j ,

−
∑
k∼i

K cos(θ
(0)
i − θ

(0)
k ) , if i = j .

Remark: λ1 = 0 and λ2 > ... > λn. A solution is stable if and
only if λ2 ≤ 0.
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Two solutions differ by loop flows

Theorem
Let G be a graph and P ∈ Rn a vector of
power injections and consumptions. Two flow
repartitions I ′, I ′′ ∈ Rm satisfying KCL differ by
a collection of loop flows.

Proof.
Let A ∈ Rn×m be the incidence matrix of G ,

P = AI ′ = AI ′′ .

Thus (I ′ − I ′′) ∈ ker(A), which is generated by the cycles of G .

F. Dörfler, M. Chertkov, and F. Bullo, Proc. Natl. Acad. Sci. 110 (2013)

R. Delabays, T. Coletta, and P. Jacquod, J. Math. Phys. 57 (2016)
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Example

Let G be a tree,

=⇒ ∃! I ∈ Rm st. AI = P ,

and for any edge 〈ij〉,

∆ij = arcsin(I〈ij〉/K )

or

∆ij = π − arcsin(I〈ij〉/K ) .

Implying, a priori, 2n−1 solutions.
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Taylor’s Proposition

Proposition (Taylor, 2012)

Let {θ(0)
i } be any stable solution of the

Kuramoto model on G . Then for any
non-empty vertices subset S,∑

〈ij〉 : i∈S ,j /∈S

cos(∆
(0)
ij ) ≥ 0 .

Then if G is a tree, there is a unique stable
solution.

R. Taylor, J. Phys. A 45 (2012)
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One cycle

Let G = Cn. For i = 1, ..., n,
define

I ∗〈i ,i+1〉 :=
i∑

j=1

Pj .

Any flow repartition I ∈ Rm can
be written

I〈i ,i+1〉 = I ∗〈i ,i+1〉 + Kε .

And the corresponding angle differences

∆i ,i+1 =

 arcsin
(

I ∗〈i ,i+1〉/K + ε
)
,

π − arcsin
(

I ∗〈i ,i+1〉/K + ε
)
.
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Angle differences

According to Taylor’s Proposition there is at most one angle
difference

|∆〈i ,i+1〉| > π/2 .

One can show (Delabays, Coletta, and Jacquod, 2016) that for
K →∞ (or P → 0), stable solutions have all

∆〈i ,i+1〉 ∈ [−π/2, π/2] .

R. Delabays, T. Coletta, and P. Jacquod, J. Math. Phys. 57 (2016)
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Sum of angle differences

Considering ∆i ,i+1 ∈ [−π/2, π/2], the sum of angle differences
around the cycle reads:

A(ε) =
n∑

i=1

∆i ,i+1

=
n∑

i=1

arcsin
(

I ∗〈i ,i+1〉/K + ε
)

!
= 2πq , q ∈ Z .

Any solution is then characterized by a topological winding
number, q ∈ Z.
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Multiple solutions, cycle of length 9
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Bound on the number of solutions

For K →∞,

A(ε)→ n arcsin(ε), ε ∈ [−1, 1]

A takes value in [−nπ/2, nπ/2].

Each multiple of 2π gives a solution.

The number of solutions is

N∞ = 2 · Int(n/4) + 1 .

J. A. Rogge and D. Aeyels, J. Phys. A 37 (2004)

J. Ochab and P. F. Góra, Acta Phys. Pol. B Proc. Suppl. 3 (2010)
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To conclude

Theorem (Delabays, Coletta, and Jacquod, 2016)

The number N of stable solutions of the Kuramoto model on a
cycle is an increasing function of K .

Corollary

The number of stable solutions is bounded by

N ≤ 2 · Int(n/4) + 1 .

Remark: When K decreases, some solutions may have one angle
difference |∆| > π/2.

R. Delabays, T. Coletta, and P. Jacquod, J. Math. Phys. 57 (2016)
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Conclusion

I Real-life networks (e.g. Lake
Erie);

I Unnecessary losses.

Next steps:

I Loop flow generation;

I Multiple cycles.

E. J. Lerner, The Industrial Physicist 9 (2003)
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