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Multistability of Phase-Locking and Topological Winding Numbers in Locally Coupled Kuramoto Models
: :

Motivation &

Electrical network

Source: Swissgrid

A graph with:
» n vertices (buses) characterized by a voltage: ]\/j\e""f,
» m edges (lines) with admittance: Yj = Gj + iBjx.
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: :

The model B
Power Flow Equations: forall i=1,...;n
n
Pi =Y |VillVjl [Bjsin(0; — 0;) + Gjjcos(6; — ;)] ,
j=1

ZWH 41 Gy sin(0; — 6;) — By cos(6; — 0))] -

High voltage networks, Vi, J:
Gj~0 and |V =|V].
Other assumption, V(i, j):
Kj=|V]’Bj =K .

A. R. Bergen and V. Vittal, Power Systems Analysis (2000)
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:

The model &)

We obtain the following reduced Power Flow Equations:

Pi=> Ksin(6; — ;) Vi.

i
We denote the transmitted power on line (ij):

Kirchhoff’'s Current Law (KCL):
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:

Stability B

Dynamics are given by the Swing Equations, which reduce here
to the Kuramoto model:

é,’ = P,-—ZKsin(G,-—Gj) .

jri

For a given solution {0;0)}, linear stability is given by the
eigenvalues of the stability matrix:

Kcos(ﬁ(o) 0(0) if i,
Mi; = Z K cos(6 (0) ko , ifi=j.
k~i

Remark: A\; =0 and Ay > ... > \,. A solution is stable if and
only if X\» <0.
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:

Two solutions differ by loop flows B

Theorem

Let G be a graph and P € R" a vector of
power injections and consumptions. Two flow
repartitions I', 1" € R™ satisfying KCL differ by
a collection of loop flows.

Proof.
Let A € R™™ be the incidence matrix of G,

P=AlI'=Al".

Thus (I’ = 1I") € ker(A), which is generated by the cycles of G. [

F. Dorfler, M. Chertkov, and F. Bullo, Proc. Natl. Acad. Sci. 110 (2013)
R. Delabays, T. Coletta, and P. Jacquod, J. Math. Phys. 57 (2016)
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: :

Example BEEH

Let G be a tree,
= JI 1eR"st. Al=P,
and for any edge (ij),

Ajj = arcsin(ly; /K)
or
Aj =7 —arcsin(ly /K) .

Implying, a priori, 2"~ solutions.
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Taylor's Proposition B

Proposition (Taylor, 2012) IS
Let {0,(0)} be any stable solution of the

Kuramoto model on G. Then for any
non-empty vertices subset S,

A 2
Z COS(AS))) >0. |Al > 7/
(if): i€SjES
Then if G is a tree, there is a unique stable S¢

solution.

R. Taylor, J. Phys. A 45 (2012)
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:

One cycle

Let G=C,. Fori=1,....,n
define

i

ll+1 ZPJ

Any flow repartition / € R™ can
be written

I(,",'_’_1> = I(*i,i+1> + Ke.
And the corresponding angle differences
N arcsin (I<*I.7,.+1>/K + 5) ,
; T — arcsin (I(*i,i+1>/K + 5) .
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:

Angle differences (3

According to Taylor's Proposition there is at most one angle
difference

|A(;7,'+1>| > 7T/2 .

One can show (Delabays, Coletta, and Jacquod, 2016) that for
K — oo (or P — 0), stable solutions have all

A1y € [=7/2,7/2].

R. Delabays, T. Coletta, and P. Jacquod, J. Math. Phys. 57 (2016)
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:

Sum of angle differences (3

Considering Aj j+1 € [-7/2,7/2], the sum of angle differences
around the cycle reads:

:iAi,i—f—l
= Zarcsm ( il /K+€)

i27rq, qge’.

Any solution is then characterized by a topological winding
number, g € Z.

11/15



Multistability of Phase-Locking and Topological Winding Numbers in Locally Coupled Kuramoto Models
:

Multiple solutions, cycle of length 9 BEsB

10/ .
< of —
—10} |
T 05 0 05 1
g
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:

Bound on the number of solutions &

For K — oo,

A(e) — narcsin(e), €€ [-1,1]

A takes value in [—nm/2,n7/2].
Each multiple of 27 gives a solution.

The number of solutions is

Noo =2-Int(n/4) + 1.

J. A. Rogge and D. Aeyels, J. Phys. A 37 (2004)

J. Ochab and P. F. Géra, Acta Phys. Pol. B Proc. Suppl. 3 (2010)
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:

To conclude &

Theorem (Delabays, Coletta, and Jacquod, 2016)

The number N of stable solutions of the Kuramoto model on a
cycle is an increasing function of K.

Corollary

The number of stable solutions is bounded by

N <2.-Int(n/4)+1.

Remark: When K decreases, some solutions may have one angle
difference |A| > 7/2.

R. Delabays, T. Coletta, and P. Jacquod, J. Math. Phys. 57 (2016)
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Conclusion = [ ]=] &

» Real-life networks (e.g. Lake
Erie);

» Unnecessary losses.

Next steps:
> Loop flow generation;

> Multiple cycles.

E. J. Lerner, The Industrial Physicist 9 (2003)
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