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Complex physical systems are unavoidably subjected to external environments not accounted for in the set of
differential equations that models them. The resulting perturbations are standardly represented by noise terms.
If these terms are large enough, they can push the system from an initial stable equilibrium point, over a nearby
saddle point, outside of the basin of attraction of the stable point. Except in some specific cases, the distance
between these two points is not known analytically. Focusing on Kuramoto-like models and under simple
assumptions on this distance, we derive conditions under which such noise terms perturb the dynamics strongly
enough that they lead to stochastic escape from the initial basin of attraction. We numerically confirm the validity
of that criterion for coupled oscillators on four very different complex networks. We find in particular that, quite
counterintuitively, systems with inertia leave their initial basin faster than or at the same time as systems without
inertia, except for strong white-noise perturbations.
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I. INTRODUCTION

Complex physical systems are mathematically modeled as
dynamical systems. Equilibrium and steady states, if they
exist, are determined and characterized by fixed points and
limit cycles or tori of the corresponding differential equations
[1]. For deterministic dynamical systems, the latter equations
should be complemented by stochastic terms to account for
unavoidable perturbations from unaccountable environmental
degrees of freedom [2]. A central question of broad inter-
est is to determine the magnitude and statistical properties
of the relevant stochastic terms that could lead to the loss
of equilibrium or induce transitions between different local
equilibria. Some physically important situations where such
stochastic escape phenomena may occur are electric power
grids with high penetration of fluctuating renewable energy
sources [3–5], superconducting rings [6], and Josephson junc-
tion arrays [7] subjected to noisy magnetic fields, as well as
neuronal systems subjected to synaptic, ion-channel, neuro-
transmitter, or membrane potential noise [8,9].

Despite decades of investigations, theoretical studies of
problems related to stochastic escape are generally exten-
sions of the pioneering work of Kramers [10], which relates
chemical reaction rates to action integrals between different
potential minima. The problem is analytically tractable in low
dimensions only (see also Ref. [11]), and several recent works
considered noise-induced large fluctuations in the dynami-
cal behavior of higher-dimensional network-coupled systems
through the numerical determination of action-minimizing
paths [5,12–14]. A better analytical understanding of the
interplay of noise characteristics with the network topology
is clearly desirable.

For some noisy coupled dynamical systems, escapes from
a basin of attraction can be related to noise characteristics and

to the topology of the interaction network. For sufficiently
weak, bounded noise, fluctuations are small and there is
no stochastic escape [15]. Noise makes the system fluctuate
about its equilibrium, and typical deviation amplitudes can be
evaluated from a linearized dynamics about the equilibrium
[16–18]. The situation becomes fundamentally different for
stronger noise. For Kuramoto-like models [Eq. (1)], with
additive Ornstein-Uhlenbeck noise, this is illustrated in Fig. 1,
which shows the time evolution of the winding number q
(defined in Sec. IV), characterizing different equilibrium fixed
points. Changes in q indicate that the system visits other
basins of attraction, surrounding different equilibrium states.
Below we use q to detect transition from one basin to another.
Depending on the oscillators’ inertia and the noise amplitude
and correlation time, this happens more or less quickly and
for longer or shorter periods of time. Due to the high di-
mensionality of the state space and the nonlinear coupling
between oscillators, the exact shape and size of the basins are
impossible to capture [19–21]; consequently, the escape time

FIG. 1. Time evolution of the winding number q for Eq. (1) on
a single-cycle network with n = 83 nodes, m = 0 (red lines), and
m
d / d

λ2
= 10/175 (blue dashed lines). (a) Noise with short correlation

time λ2τ0/d = 5.7 × 10−4. (b) Noise with longer correlation time
λ2τ0/d = 0.03.
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from one basin is hard to predict. For the Kuramoto model
with cyclic interactions, DeVille [12] showed that the escape
time scales as the exponential of the potential barrier height
between the initial and final equilibrium states. In the spirit
of Kramers [10], Hindes and Schwartz [13,14] further relate
the escape time to the numerically computed action on the
action-minimizing trajectory between the two equilibria. In
higher dimensions it is hard to see how these approaches could
give analytical estimates other than in specific situations.

In this paper we propose a resolutely different approach to
stochastic escape from stable equilibria in complex, network-
coupled dynamical systems, incorporating noise character-
istics as well as network dynamics and topology. We fo-
cus on synchronous fixed points of Kuramoto-like models
[i.e., θ̇i(t ) = θ̇ j (t ), ∀ i, j, t] but stress that the approach is
applicable to more general systems. We subject the initial,
synchronous state to additive Ornstein-Uhlenbeck noise. Lin-
earizing the dynamics about the synchronous state, we cal-
culate the standard deviation of the noise-induced fluctuations
about that state. The linearized dynamics is no longer accurate
when the standard deviation exceeds some threshold distance
Dc. Clearly Dc is bounded from above by the distance �

between the stable synchronous state and the closest saddle
point to the next basin of attraction. We postulate that Dc

is parametrically proportional to �. This postulate allows
us to derive a criterion for stochastic escape based on the
distance � between the initial stable synchronous fixed point
and the nearest saddle point and not as in Kramers’ and other
approaches [5,10,12–14] on their potential height difference.
We validate numerically our postulate that Dc ∼ � for four,
very different networks and furthermore show that it gives
precise estimates for the first stochastic escape time. We
note that similar linearization procedures have been used in
a different context in Ref. [22] to predict transitions in an
evolutionary ecology model.

The paper is organized as follows. In Sec. II we intro-
duce our model of coupled oscillators and give analytical
expressions for the response induced by noisy perturbations.
Section III describes our criterion for stochastic escapes, and
Sec. IV illustrates numerically our theory. Our conclusions are
given in Sec. V.

II. THE MODEL

We consider generic, Kuramoto-like models of nonlinearly
coupled oscillators on complex graphs defined by the differ-
ential equations [23]

m θ̈i + d θ̇i = Pi −
∑

j

bi j sin(θi − θ j ). (1)

Oscillators with inertia m and damping parameter d are
described by compact angle coordinates θi ∈ (−π, π ] and
natural frequencies Pi ∈ R. They are located on nodes i =
1, . . . , n of a connected coupling network defined by the
adjacency matrix, bi j � 0. Without loss of generality, we
consider

∑
i Pi = 0, which is equivalent to considering the

system in a rotating frame, because Eq. (1) is invariant under
θi(t ) → θi(t ) + �t , Pi → Pi + d �. For bounded distributions
of natural frequencies on small enough intervals, synchronous
states exist with θ̇i ≡ 0, ∀i.

We consider a stable synchronous state θ(0) =
(θ (0)

1 , . . . , θ (0)
n ) corresponding to natural frequencies P(0).

We subject this state to a time-dependent perturbation
P(t ) = P(0) + δP(t ). Linearizing the dynamics defined by
Eq. (1) with θ(t ) = θ(0) + δθ(t ), one obtains

m δ̈θ + d δ̇θ ≈ δP − L
({

θ
(0)
i

})
δθ, (2)

with the weighted Laplacian L({θ (0)
i }) defined by

Li j =
{−bi j cos

(
θ

(0)
i − θ

(0)
j

)
, i �= j,∑

k bik cos
(
θ

(0)
i − θ

(0)
k

)
, i = j.

(3)

This matrix is positive semidefinite, with a single eigenvalue
λ1 = 0 and associated eigenvector u1 = (1, 1, 1, . . . , 1)/

√
n,

while λα > 0, α = 2, 3, . . . , n.
The dynamics of Eq. (2) is characterized by different

timescales. The first one characterizes the noisy perturbations.
We consider spatially uncorrelated noise with vanishing aver-
age and Ornstein-Uhlenbeck correlator

〈δPi(t ) δPj (t
′)〉 = δi j δP2

0 exp[−|t − t ′|/τ0]. (4)

Thus, the perturbation is characterized by its variance, δP2
0 and

its correlation time, τ0 > 0. The second timescale is m/d . It
gives the typical time over which local excitations are damped
by d , neglecting the network dynamics. Finally, one has a set
of timescales d/λα , α = 2, . . . , n, each of them defined by
the ratio of the damping parameter and an eigenvalue of the
Laplacian. For m/d > d/4λα these are related to oscillation
timescales of the Laplacian modes, while for m/d < d/4λα

they relate to network-dynamical corrections to the damping
timescale. We consider τ0 as a tunable parameter allowing us
to explore different regimes depending on its relation with
m/d and d/λα .

We measure the distance between the state of the sys-
tem and the initial synchronous state as the square root of
the variance 〈δθ2(t )〉 = ∑

i〈[δθi(t ) − δθ (t )]2〉 with δθ (t ) =
n−1 ∑

i δθi(t ) and brackets indicating an average over differ-
ent realizations of noise with the same first two moments. It
appropriately gives the standard deviation of the angle devia-
tions in the subspace orthogonal to u1, because displacements
in that subspace do not change the state. To calculate 〈δθ2(t )〉,
we expand angle deviations over the eigenbasis of L and solve
Eq. (2) for the coefficients of that expansion [24, Appendix
A]. We obtain the long-time limit

lim
t→∞〈δθ2(t )〉 = δP2

0

∑
α�2

τ0 + m/d

λα (λατ0 + d + m/τ0)
. (5)

In the two limits of long and short τ0, one has

lim
t→∞〈δθ2(t )〉 �

⎧⎨
⎩

δP2
0 τ0

nd Kf1, τ0 � d
λα

, m
d ,

δP2
0

n Kf2, τ0 � d
λα

, m
d ,

(6)

with Kfp = n
∑

α�2 λ
−p
α [17,25]. Interestingly, none of these

asymptotics depend on inertia.
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FIG. 2. Color-coded survival probability P for Eq. (1) with m = 0. (a) Single-cycle network with n = 83 and nearest-neighbor coupling;
(b) single-cycle network with n = 83, nearest- and third-neighbor coupling; (c) U.K. transmission network with n = 120; (d) small-world
network with n = 200 nodes. Yellow dashed lines give the boundary of the region of validity of the inequality in Eq. (8) with m = 0 and
� obtained analytically for panel (a) and numerically for panels (b)–(d). Observation times Tobs correspond to comparable dimensionless
parameters λ2Tobs/d = 143 (a), 143 (b), 130 (c), and 115 (d).

III. ESCAPE FROM THE BASIN

The dynamics of Eq. (1) is described by a vector function
θ(t ) following the gradient of the potential

V (θ, t ) =
n∑

i=1

Pi(t )θi −
∑
i, j

bi j[1 − cos(θi − θ j )], (7)

starting from θ(t = 0) = θ(0). When the noisy perturbation
tilts this potential strongly enough, θ can escape the basin of
attraction of θ(0). DeVille showed that, for not too large δP0,
the system almost surely escapes the basin in a neighborhood
of a saddle point with a unique unstable direction, which we
call 1-saddle [12]. Comparing the typical distance between
θ and θ(0) of Eq. (5) with the distance � between θ(0) and
its closest 1-saddle ϕ gives us a parametric condition for
noise-induced stochastic escape

δP2
0

∑
α�2

τ0 + m/d

λα (λατ0 + d + m/τ0)
� �2. (8)

Our task is therefore to identify the position of the 1-saddles.
This is in general no trivial task because the geometry of
basins of attraction in such high-dimensional problems is
impossible to fully capture. For single-cycle networks with
identical frequencies, 1-saddles can be identified analytically
[12,21]. For more general networks, we give in Appendix D a
numerical algorithm which locates 1-saddles ϕ and constructs
the distribution of their distance to θ(0).

IV. NUMERICAL SIMULATIONS

We first check Eq. (8) against numerical simulations of the
Kuramoto model of Eq. (1) with m = 0. We consider four
different networks (see Appendix C) with constant couplings
b0 = 1 and identical frequencies, which are a single-cycle
network with nearest-neighbor coupling, a single-cycle with
nearest- and third-neighbor coupling, a model of the U.K.
transmission network, and a realization of a small-world
network [26]. At each node, natural frequencies are perturbed
by spatially uncorrelated Gaussian noisy sequences δPi(t )
satisfying Eq. (4). We integrate the dynamics of Eq. (1), using
a fourth-order Runge-Kutta method, during an observation

time Tobs and check for a stochastic escape at every time
step. Our method for detecting such occurrences is based
on Refs. [27–29], which showed that on meshed networks,
different fixed-point solutions of Eq. (1) correspond to differ-
ent vectors of winding numbers q. While winding around a
cycle of a meshed network, the sum of angle differences is
an integer multiple of 2π . This integer is the winding number
q on the corresponding cycle of the interaction graph. Such
winding numbers can be defined on each cycle of the network
and form together a winding vector q.

References [12,14] observed that transitions between dif-
ferent such equilibrium states occur by phase slips of few
oscillators, and we show in Appendix B that these slips can
be detected by recording the time evolution of q, as illustrated
in Fig. 1. We therefore detect desynchronizing events through
variations of winding numbers. For each set of noise parame-
ters δP0 and τ0 we perform several calculations corresponding
to different noise realizations.

Figure 2 shows the fraction P of runs that remain in the
initial basin for t � Tobs. The parameter space is sharply
divided into (a) the red region (denoted U for “unstable”)
where all runs left the basin of attraction before Tobs, (b) the
blue region (denoted S for “stable”), where none of the runs
left the initial basin of attraction, and (c) a rather narrow
intermediate region between U and S where some runs left
and some runs stayed in the initial basin.

It is quite remarkable that the intermediate region (c) is
qualitatively if not quantitatively identified by Eq. (8) with a
network-dependent �. As discussed above, � is given by a
typical distance between the initial stable fixed point θ(0) and
the nearest saddle point ϕ roughly giving the smallest linear
size of the basin of attraction. For the single-cycle network, all
1-saddles are located at the same distance from θ(0), which can
be obtained analytically [12]. For the other three networks,
many, though likely not all, 1-saddles are identified numeri-
cally. The detailed methods for finding 1-saddles are given in
Appendix D. For the single-cycle network with nearest- and
third-neighbor coupling, the distance � from θ(0) takes only
a few different values of which we consider only the most
representative. For the U.K. and small-world networks, on the
other hand, we find a distribution of � ∈ [�min,�max], which
is likely due to the complexity of those meshed networks.
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FIG. 3. Color-coded survival probability P for Eq. (1) with m = 0 for a single-cycle network with n = 83 and nearest-neighbor coupling;
λ2Tobs/d = 14.3 (a), 143 (b), 569 (c). The yellow dashed line gives the boundary of the region of validity of the inequality in Eq. (8) with
m = 0 and � obtained analytically.

The yellow dashed lines in Fig. 2 then indicate our theoretical
prediction Eq. (8) for the obtained value � for the two single-
cycle networks and for values of � corresponding to the 25th,
50th, and 75th percentiles of the distribution of � for the
U.K. and small-world networks. In all cases, the shape of
the boundary is well predicted. For the more complex U.K.
transmission network [Fig. 2(c)], there is a horizontal shift
between theory and numerics, presumably due to to stronger
anisotropies of the basins of attraction in this more complex
network, effectively requiring a larger Tobs.

In the case of bounded noise, we expect an inertialess
system to remain in its initial basin for weak enough noise
[15]. However, the noise considered in our case is Gaussian,
and arbitrarily large excursion will occur if one waits long
enough. In fact, we found that increasing Tobs shifts the
boundary between stable and unstable regions to lower δP0.
We evaluated the influence of the observation time by repro-
ducing Fig. 2(a) with different Tobs. This is shown in Fig. 3
where we performed simulations for the cycle, increasing the
observation time. Figure 3 shows the fraction of simulations
that stay in the initial basin of attraction after an observation
time satisfying λ2Tobs/d = 14.2 [Fig. 3(a)], 142.4 [Fig. 3(b)],
569 [Fig. 3(c)], for a cycle network with n = 83 nodes. As Tobs

increases exponentially, we observe the boundary between
regions U and S drifting to the left due to the escape time
that is superexponential as δP0 decreases.

Figure 4 further shows the stochastic escape time as a
function of δP0. A superexponential behavior is observed

which can be understood as follows. The noise generates
a distribution of angle deviations which we expect to be
Gaussian with a variance given by Eq. (5). The escape time
is then inversely proportional to the probability to have such a
deviation exceeding �,

Tesc ∝
[

2
∫ ∞

β�

P
(
δθ

)
d
(
δθ

)]−1

, (9)

with a free parameter β of order 1. Figure 4 validates this argu-
ment using a Gaussian distribution of single-angle deviation
P(δθ ) with variance 〈δθ2(t )〉/n; see Eq. (5). We have found,
but do not show, that Tesc diverges at a finite value of δP0 for a
box-distributed, bounded noise.

We finally consider Eq. (1) with nonzero inertia. We focus
on the single-cycle network with nearest- and third-neighbor
coupling and tune the inertia parameter m to explore different
regimes defined by the different timescales of Eq. (1). Figure 5
shows the difference in survival probabilities with and without
inertia in the regimes (a) d/λα � m/d , (b) d/λα � m/d , and
(c) d/λα � m/d . Deep in the stable (unstable) regions, both
inertialess and inertiaful models have P = 0 (P = 1) and
the difference P(m = 0) − P(m) = 0. Somehow counterintu-
itively, however, there is an intermediate region where the
presence of inertia facilitates stochastic escape compared to
the inertialess case, P(m = 0) − P(m) > 0. The boundary of
that region are in excellent agreement with the prediction of
Eq. (8), giving the two dashed yellow lines for m = 0 and
m �= 0.

FIG. 4. Escape time Tesc from the initial basin of attraction vs noise amplitude, δP0, for cycle networks with n = 83 (a), n = 249 (b),
and the U.K. transmission network (c). The noise correlation time corresponds to λ2τ0/d = 8.6 × 10−3 (a), λ2τ0/d = 9.6 × 10−4 (b), and
λ2τ0/d = 0.02 (c). Blue circles are averages over 40 realizations of noise. Red crosses correspond to Eq. (9), with β ∼= 5/8 (a, b) and
β ∼= 2/5 (c).
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FIG. 5. Color-coded difference in survival probability P with and without inertia for a single-cycle network with n = 83 with nearest- and
third-neighbor coupling obtained from 20 realizations of noise; (a) m

d / d
λ2

= 0.25/0.35, (b) 2.5/0.35, and (c) 25/0.35. The yellow dashed lines
give the boundary of the region of validity of the inequality in Eq. (8), as discussed in the main text.

For large τ0, the faster escape of the system with finite
inertia is easily understood. With long correlation time, the
noise tends to push the system in the same direction for long
sequences. This is sufficient to have the inertiaful system
accumulate a significant kinetic energy. The system keeps
then moving, even if, after some time, the noise starts pushing
the other way and allows it to move above a saddle point with
inertia, whereas the inertialess system is immediately stopped
by noise reversal.

For smaller τ0, on the other hand, inertia resists short
sequences of pushes in rapidly varying directions and ac-
cordingly, we found that inertia stabilizes the system in that
case (see Appendix E). This is not predicted by Eq. (8) and
is probably due to contributions beyond our linear response
theory, because discrepancies appear for values of δP0 com-
parable to the coupling strength b0. The influence of inertia
on stochastic escapes is perhaps best illustrated in Fig. 1,
where the presence of inertia stabilizes the system under
short-correlated noise [Fig. 1(a)] but leads to more frequent
stochastic escapes for long-correlated noise [Fig. 1(b)].

V. CONCLUSION

We have constructed an alternative to stochastic escape. We
compare a spectral calculation of typical sizes of stochastic
excursions about synchronous equilibrium states with an eval-
uation of the distance between this synchronous equilibrium
state and 1-saddles. This method provides analytical results
with a single, model-dependent free parameter of order one
[β in Eq. (9)]. It gives remarkably accurate estimates for
stochastic escape times, as is illustrated in Fig. 4. Even if,
in this work, we considered networks of coupled oscillators,
our method can be applied to any dynamical system where
some stable fixed points and 1-saddles are available, and
the linearization of the dynamics in a neighborhood of the
considered fixed point is possible. The distance � between
stable fixed points and 1-saddles and the eigenvalues of the
linearization of the dynamical system are the main ingredients
of Eq. (8), which determine regions where escape is unlikely
in reasonable time.

In the context of coupled oscillators, we interestingly
observed that the presence of inertia leads to faster, more
frequent escapes for long noise coherence times, while the

effect is reversed for short noise coherence times. This is
illustrated in Fig. 1. Further studies should consider the effect
of spatially correlated noise and non-Gaussian, long-tailed
noise distributions [18].
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APPENDIX A: DETAILS OF CALCULATIONS FOR THE
VARIANCE OF THE ANGLE DISPLACEMENTS

We give some details of the calculation that leads to Eq.
(5). Expanding the angle deviations over the eigenmodes of
the Laplacian Eq. (3), δθ(t ) = ∑

α cα (t )uα , Eq. (2) becomes

m c̈α (t ) + d ċα (t ) = δP(t ) · uα − λαcα (t ), α = 2, . . . , n.

(A1)

With the help of a Laplace transform, the solution of Eq. (A1)
is given by

cα (t ) = m−1e
−d/m−�α

2 t
∫ t

0
e�αt ′

(A2)

×
∫ t ′

0
δP(t ′′) · uαe

d/m−�α
2 t ′′

dt ′′dt ′, (A3)

with �α =
√

(d/m)2 − 4λα/m. Taking advantage of the or-
thogonality between eigenmodes of the Laplacian we have

〈δθ2(t )〉 ≡
∑

i

〈[δθi(t ) − δθ (t )]2〉 =
∑
α�2

〈c2
α (t )〉, (A4)

with δθ (t ) = n−1 ∑
i δθi(t ). Inserting Eq. (A1) into Eq. (A4),

using the time correlator of δP Eq. (4), and finally taking the
long-time limit, one obtains, after some algebra, Eq. (5).

APPENDIX B: METHOD TO DETERMINE ESCAPE TIME

Various methods can be used to determine, at any iteration
step of the simulation, if the system under consideration has
escaped its initial basin of attraction. We compared three of
them, which we detail here.
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TABLE I. Final winding number q(1) and number of iterations before the escape for m = 0 (simulations 1–3) and finite inertia (simulations
4–6). Each triplet is obtained by integrating Eq. (1) with the same noise sequence.

Simulation 1 2 3 4 5 6

Method 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
q(1) −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1
No. of iterations 400 400 400 685 685 685 558 558 550 1609 1609 950 1664 1664 1249 1887 1887 1151

Method 1. As stated in the main text, stable equilibria of
Eq. (D1) below can be unambiguously distinguished by their
winding vector q. The method that we used for the numerical
simulations in the main text proceeds as:

(1) At each time step, compute q.
(2) If q �= q(0) the winding vector of the initial basin of

attraction, check if the system is still in the initial basin. To
do so, simulate the dynamics without noise, taking the current
state of the system as initial conditions. Once synchrony is
reached, compute the winding vector q(1).

(3) If q(1) �= q(0), then the system was out of the initial
basin. Otherwise, if q(1) = q(0), the system was still in the
basin, and thus the simulation can move to the next time step.

Method 2. This method is based on DeVille’s observation
[12] that escapes from basins of attraction occur on a short
time interval and can be identified by a fast slip of a small
group of angles. It proceeds as

(1) At each time step, check if some angles made a large
excursion, i.e., ‖θ(t ) − θ(0)‖∞ > 2π .

(2) If so, then simulate the dynamics without noise, taking
the current state of the system as initial conditions, until it
synchronizes to the state θ(1).

(3) If θ(1) �= θ(0), then the system was out of the initial
basin. Otherwise, if θ(1) = θ(0), the system was still in the
basin, and thus the simulation can move to the next time step.

Method 3. Finally, we tested the method in which we check
at every time step whether the system returns to the initial
basin or not. This method guarantees to find the best estimate
of the escape time, at least for the Kuramoto model (m = 0),
but is very time-consuming.

Table I compares escape times and final winding numbers
for a single cycle of n = 83 nodes. For the Kuramoto model
(m = 0) the three methods give very similar results. For the
case with inertia, the first two give larger escape times com-
pared to the last method. We explain this as follows. When
the noise is removed, the system may have accumulated some
kinetic energy that will drive it out of the basin of attraction.
This can happen before the winding number changes or a
large angle excursion occurs. Furthermore, if the perturbation
was still active, it could have pushed the system back towards
the stable fixed point before it leaves the basin of attraction,
increasing the escape time.

APPENDIX C: THE FOUR NETWORKS

We briefly describe the networks used for the numerical
simulations of the main text.

1. Cycle with nearest neighbors coupling

We consider a cycle network of size n, with identical
natural frequencies. The eigenvalues of its weighted Laplacian
[Eq. (3)] can be obtained analytically,

λα = cos(δ)[2 − 2 cos(kα )], α = 1, . . . , n, (C1)

where δ is the angle difference between neighboring sites
(which are identical at a stable equilibrium [30]) and kα =
2π (α − 1)n−1. For n = 83 we have λα ∈ [0, 4 cos(δ)] and
λ2 = 0.0057.

Equation (6) can be explicitly calculated for cyclic net-
works as functions of the number of nodes n:

δP2
0 � π2dn

τ0(n − 2)2
, τ0 � d/λα, m/d, (C2)

δP2
0 � 60π2n

(n − 2)2(n2 + 11)
, τ0 � d/λα, m/d. (C3)

Figure 6 shows the maximum values of δP0 satisfying
Eqs. (C2) and (C3). One remarks that, while increasing the
size of the cycle, the stable region gets smaller and even van-
ishes for n → ∞ similarly to fluctuations that destroy long-
range order in one-dimensional locally interacting quantum
magnets [31].

FIG. 6. Maximum value δP∗
0 of the noise amplitude obtained

from Eqs. (C2) and (C3) for large (blue) and short (green, red) time
correlation, τ0, as a function of the size of the cyclic network n.
For the red curve, we consider a constant ratio τ0/d = 0.001. For
the green curve we consider a constant ratio λ2τ0/d = 0.001 where
λ2 = 2 − 2 cos(2π/n) depends on the size of the network.

062213-6



NOISE-INDUCED DESYNCHRONIZATION AND … PHYSICAL REVIEW E 99, 062213 (2019)

FIG. 7. (a) Illustration of the connections of a vertex to its first and second neighbors on a cycle. (b) Illustration of the connections of a
vertex to its nearest and third neighbors on a cycle. (c) Illustration of the U.K. network with n = 120 vertices and m = 165 edges. (d) Illustration
of our small-world network with n = 200 vertices. Its relative clustering coefficient is C(Gp)/C(G0) ≈ 0.89, and its relative characteristic path
length is L(Gp)/L(G0) ≈ 0.32.

2. Cycle with nearest- and third-neighbor coupling

We consider a cycle network of size n, where each vertex
is connected to its nearest and third neighbors [see Fig. 7(b)].
With identical natural frequencies, the eigenvalues of its
weighted Laplacian [Eq. (3)] can be obtained analytically,

λα = cos(δ)[4 − 2 cos(kα ) − 2 cos(3kα )], α = 1, . . . , n,

(C4)
where δ is the angle difference between neighboring sites
(which are identical at a stable steady state [30]) and kα =
2π (α − 1)n−1. For n = 83 we have λα ∈ [0, 8 cos(δ)] and
λ2 = 0.057.

3. U.K. transmission grid

A model of the U.K. electrical transmission grid is depicted
in Fig. 7(c). It is composed of 120 nodes and 165 edges,
making 44 cycles. During the numerical simulations, to check
whether the system has left the initial basin of attraction or
not, we check the winding number on each cycle, i.e., the
winding vector q = (q1, . . . , q44). The second eigenvalue of
its Laplacian matrix is λ2 ≈ 0.013.

4. Small-world

A small-world network is constructed from an initial net-
work, where some edges are randomly rewired (see Ref. [26]).
In our case, the initial network G0 is a cycle with n = 200

FIG. 8. Example of the time evolution of the 120 angles of the
U.K. network [Fig. 7(c)]. We clearly see two angles jumping from
a value close to 0 to a value close to 2π . The state of the system
at the time given by the vertical dashed line is our candidate for a
1-saddle ϕ.

vertices and where each vertex is connected to its first and
second neighbors [see Fig. 7(a)]. Each edge (i, j) is then
replaced with probability p = 0.05 by the edge (i, k), where k
is chosen at random among the vertices not already connected
to i. The network obtained Gp is illustrated in Fig. 7(d). It
is a small world because it has a large relative clustering
coefficient C(Gp)/C(G0) ≈ 0.89 and a small relative charac-
teristic path length L(Gp)/L(G0) ≈ 0.32 (see Ref. [26] for
more details). The second eigenvalue of its Laplacian matrix is
λ2 ≈ 0.046.

APPENDIX D: FINDING 1-SADDLES

We detail our methods for finding 1-saddles (equilib-
ria with a unique unstable direction) of the dynamical
system

miθ̈i + diθ̇i = P(0)
i + δPi(t ) −

∑
j

bi j sin(θi − θ j ), (D1)

with i = 1, . . . , n, for arbitrary coupling graph.

1. Cycle networks

For cycle networks with nearest-neighbor coupling and
identical natural frequencies, the distance between the stable
equilibrium θ(0) = (0, . . . , 0), and the 1-saddle ϕ, can be
computed analytically as [21]

�2 = ∥∥θ(0) − ϕ
∥∥2

2 = n(n2 − 1)

12(n − 2)2
π2. (D2)

2. General networks

For general networks, the anisotropy of the basins of attrac-
tion renders the 1-saddles complicated to identify analytically.
We propose a numerical method to locate 1-saddles, which is
based on two results of DeVille [12]:

(1) Escapes from basins of attraction almost always occur
in a neighborhood of a 1-saddle of the potential

V (θ) =
n∑

i=1

P(0)
i θi −

∑
i< j

bi j[1 − cos(θi − θ j )]. (D3)
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FIG. 9. Histograms of the 2-norm distance from the fixed point of the set of 1-saddles found numerically for the cycle with third-neighbor
(a), the U.K. network (b), and the small-world network (c). We found (a) 284 1-saddles for the cycle with third neighbor, with smallest
2-norm nmin ≈ 3.12, and quartiles of the 2-norms (Q1, Q2, Q3) ≈ (3.12, 8.61, 8.61); (b) 788 1-saddles for the U.K. network, with smallest
2-norm nmin ≈ 3.13, and quartiles of the 2-norms (Q1, Q2, Q3) ≈ (7.24, 10.02, 12.17); and (c) 4956 1-saddles for the small-world network,
with smallest 2-norm nmin ≈ 3.13, and quartiles of the 2-norms (Q1, Q2, Q3) ≈ (10.74, 12.13, 13.95). The yellow dashed lines indicate the
three quartiles Q1, Q2, and Q3, and the red dashed lines indicate the norm of the closest 1-saddle.

(2) Transitions from a basin to another occur on a short
time interval compared to the time the system remains in a
basin of attraction.

We numerically integrate Eq. (D1), where δPi is a noise
with small variance, and keep track of the angles in order to
identify iterations where the system is close to a 1-saddle. As
observed in Ref. [12], when the system is driven (by the noise)
to another basin of attraction, its trajectory goes close to a
1-saddle, and this can be seen in the time evolution of the
angles as a fast jump of a set of angles of amplitude 2π (see
Fig. 8). The state ϕ(0) of the system in the middle of this jump
will be a candidate for a 1-saddle. This state is probably not
exactly a 1-saddle, but according to Ref. [12], it should be
close to one. We then solve the steady-state equations

P(0)
i =

∑
j

bi j sin(θi − θ j ), i = 1, . . . , n, (D4)

using a Newton-Raphson method with initial conditions ϕ(0).
This gives an equilibrium ϕ∗ of Eq. (D1), which we expect
to be close to θ(0). Computing the eigenvalues of the Jacobian
of Eq. (D1), the equilibrium ϕ∗ is a p-saddle if and only if it

FIG. 10. The two 1-saddles, ϕ(1) and ϕ(2), with smallest 2-norm,
for the cycle network, with nearest and third neighbors. (a) ϕ(1): all
angles are equal, except one which is π apart from all others. The
2-norm of this 1-saddle is ∼3.12. (b) ϕ(2): all angles are slightly
displaced compared to their neighbors. The 2-norm of this 1-saddle
is ∼8.61. This configuration is, in our opinion, more likely to occur
under noisy perturbations applied to all nodes.

has p positive eigenvalues. Note that one eigenvalue is always
zero due to invariance of Eqs. (D1) and (D3) under a constant
shift of all angles.

Running this simulation for a long enough time, we identi-
fied the following:

(1) 284 1-saddles for the cycle with nearest and third
neighbor. The distribution of their distance to the stable
equilibrium θ(0) is given in Fig. 9(a). Looking more into
details, we observe that each value in Fig. 9(a) corresponds
to a unique 1-saddle, up to an index shift or the angles’ sign
reversal. The 1-saddles with the two smallest norm, ϕ(1) and
ϕ(2), are represented in Fig. 10. The first one [Fig. 10(a)] has
the smallest 2-norm, but its configuration with n − 1 equal
angles and one angle π apart from all others is, in our opinion,
unlikely to occur. As we consider noisy perturbation at all
nodes, a configuration with a single large angle excursion and

FIG. 11. Color plot of the difference of fraction of trajectories
that stay in the initial basin of attraction with finite inertia compared
to m = 0 for a cycle network of n = 83 nodes. Timescales are
m
d / d

λ2
= 10/175.
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no excursion for all other nodes seems less likely than a con-
figuration where all angles are slightly displaced from their
neighbors. In the main text, we performed our study using ϕ(2)

as 1-saddle for the cycle with nearest and third neighbor.
(2) 788 1-saddles for the U.K. network, whose distribution

of the distances to the stable equilibrium is given in Fig. 9(b).
Distances cover a large range of value, due to the anisotropy
of the basin of attraction.

(3) 4956 1-saddles for the small-world network. The dis-
tribution of the distances to θ(0) is given in Fig. 9(c). Most of
the 1-saddles are at a similar distance.

APPENDIX E: LINEARIZATION BREAKDOWN

In the main text, we show that, according to our theory,
inertia always destabilizes the system compared to the iner-
tialess case. However, for the cycle network, we found that
for small τ0 and large δP0, inertia stabilizes the system, as
illustrated in Fig. 11. The blue area where inertia stabilized
the system is not predicted by our theory [Eq. (8)]. This can
be explained by the breakdown of the linear approximation.
Indeed, the blue region in Fig. 11 starts for the value of the
order of the coupling δP0

∼= b0 ≡ 1.

[1] E. Ott, Chaos in Dynamical Systems, 2nd ed. (Cambridge
University Press, Cambridge, 2002).

[2] N. G. Van Kampen, Phys. Rep. 24, 171 (1976).
[3] J. Machowski, J. W. Bialek, and J. R. Bumby, Power System

Dynamics, 2nd ed. (Wiley, Chichester, UK, 2008).
[4] S. Auer, F. Hellmann, M. Krause, and J. Kurths, Chaos 27,

127003 (2017).
[5] B. Schäfer, M. Matthiae, X. Zhang, M. Rohden, M. Timme, and

D. Witthaut, Phys. Rev. E 95, 060203(R) (2017).
[6] C. E. Gough, M. S. Colclough, E. M. Forgan, R. G. Jordan, M.

Keene, C. M. Muirhead, A. I. M. Rae, N. Thomas, J. S. Abell,
and S. Sutton, Nature (London) 326, 855 (1987).

[7] E. Il’ichev and A. N. Omelyanchouk, Low Temp. Phys. 34, 413
(2008).

[8] H. A. Braun, H. Wissing, K. Schäfer, and M. C. Hirsch, Nature
(London) 367, 270 (1994).

[9] Y. Liu, C. Rui, and J. Duan, arXiv:1811.10960.
[10] H. Kramers, Physica 7, 284 (1940).
[11] M. I. Dykman, Phys. Rev. A 42, 2020 (1990).
[12] L. DeVille, Nonlinearity 25, 1473 (2012).
[13] J. Hindes and I. B. Schwartz, Phys. Rev. Lett. 117, 028302

(2016).
[14] J. Hindes and I. B. Schwartz, Chaos 28, 071106 (2018).
[15] D. Lee, I.-L. Aolaritei, T. L. Vu, and K. Turitsyn, IEEE Trans.

Cont. Netw. Sys., 1 (2019).
[16] B. Bamieh, M. R. Jovanovic, P. Mitra, and S. Patterson, IEEE

Trans. Autom. Control 57, 2235 (2012).
[17] M. Tyloo, T. Coletta, and P. Jacquod, Phys. Rev. Lett. 120,

084101 (2018).

[18] H. Haehne, K. Schmietendorf, S. Tamrakar, J. Peinke, and S.
Kettemann, Phys. Rev. E 99, 050301(R) (2019).

[19] D. A. Wiley, S. H. Strogatz, and M. Girvan, Chaos 16, 015103
(2006).

[20] P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, Nat. Phys. 9,
89 (2013).

[21] R. Delabays, M. Tyloo, and P. Jacquod, Chaos 27, 103109
(2017).
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