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Abstract— The Kron reduction is used in power grid mod-
eling when the analysis can – supposedly – be restricted to
a subset of nodes. Typically, when one is interested in the
phases’ dynamics, it is common to reduce the load buses
and focus on the generators’ behavior. The rationale behind
this reduction is that voltage phases at load buses adapt
quickly to their neighbors’ phases and, at the timescale of
generators, they have virtually no dynamics. We show that
the dynamics of the Kron-reduced part of a network can
have a significant impact on the dynamics of the non-reduced
buses. Therefore, Kron reduction should be used with care and,
depending on the context, reduced nodes cannot be simply
ignored. We demonstrate that the noise in the reduced part
can unexpectedly affect the non-reduced part, even under the
assumption that nodal disturbances are independent. Therefore,
the common assumption that the noise in the non-reduced
part is uncorrelated may lead to inaccurate assessments of
the grid’s behavior. To cope with such shortcomings of the
Kron reduction, we show how to properly incorporate the
contribution of the reduced buses into the reduced model using
the Mori-Zwanzig formalism.

Index Terms— Power system; Grid resilience; Kron reduc-
tion; Mori-Zwanzig formalism.

I. INTRODUCTION

The resilience of networked systems is of primal impor-
tance to ensure their reliability and operations. It is especially
the case for electric power grids, which have attracted
tremendous attention over the last decade due to the ongoing
energy transition [1], [2]. One way to evaluate the resilience
of a system is by quantifying its response to an external
input [3], [4], [5], [6]. In a high-voltage transmission grid, for
instance, one can wonder about the voltage phase response to
a noisy injection of power coming from a renewable energy
source.

Such transmission grids are usually large-scale systems.
As a convenient way to render their analysis more tractable,
it has become standard to first apply a Kron reduction [7],
[8]. By taking the Schur complement [9, Sec. 0.8.5] of
the dynamics matrix of a system, the latter transformation
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only retains the synchronous generators while reducing the
loads into effective line susceptances. Then, based on this
initial reduction, previous studies focused on the resilience
to disturbances occurring at the non-reduced buses.

The rationale underlying the validity of the Kron reduction
boils down to that of timescale separation. Indeed, loads
typically respond much faster than conventional plants to
frequency disturbances. Loads then appear as passive nodes
in the timescale of the plants.

While the analysis of the Kron-reduced system allows to
approximate the vulnerability of synchronous generators, we
claim that such an approach is insufficient to accurately and
fully evaluate the resilience to external inputs. Obviously,
the reduced buses, which are typically loads, are subject to
disturbances too. In fact, their dynamics is mostly fluctuating
in time, as they are dictated by the consumption of power.
We show in this manuscript that, although the noise at the
reduced nodes is spatially uncorrelated, (i) its impact on non-
reduced nodes may be correlated and (ii) the magnitude of
said impact may be hard to predict. Importantly, we show
that summarizing the impact of the reduced nodes’ noise on
the non-reduced nodes to a white noise can be detrimental
to an accurate resilience estimation.

We propose a unified framework to assess the impact of
disturbances both at the reduced and non-reduced buses.
First, using Mori-Zwanzig formalism [10], [11], [12] , we
take an unconventional approach to account for the timescale
separation assumed by the Kron reduction. We derive a
general expression for the time-evolution of the slow buses
as a function of the fast ones. By expanding over the
timescale separation parameters (ϵ below), this naturally
leads to the reduction of the grid dynamics to degrees
of freedom corresponding to the synchronous generators.
Applying this formalism, we also account for the reduction
of the disturbance, and explicitly calculate their effect on the
non-reduced buses.

Second, we assess the resilience of the grid by evaluating
the variance of the frequency deviations induced by time-
correlated noisy inputs. In particular, we can compare the
contribution from reduced and non-reduced buses to the vari-
ance of the frequency deviation. We show, through analytical
and numerical examples how misleading simulation of Kron-
reduced systems can be, if disturbances in the reduced part
are neglected.

II. PRELIMINARIES

Throughout the manuscript, we use 1N to denote the N -
dimensional vector of ones and IdN for the identity matrix
of size N . In the following, we sometimes refer to buses as
nodes.



We model the voltage phase dynamics with the struc-
ture preserving model [13] of the swing equations [14,
Sec. 3.9.2]. Neglecting line conductances and voltage varia-
tions as a first approximation, the dynamics of voltage phases
resort to that of a network of N nonlinearly coupled phases
θi ∈ (−π, π],

mi θ̈i + di θ̇i = pi −
N∑
j=1

bij sin(θi − θj) + ηi , (1)

for i = 1, ... N . The effective inertia and damping at each
bus i are summarized in the constants mi and di respectively,
and pi denotes the power injected or withdrawn at that bus.
The coupling between the buses is given by the elements
of the adjacency matrix bij = Bij |Vi||Vj | where Bij is the
susceptance of the transmission line connecting buses i and
j and |Vi| is the amplitude (assumed to be constant) of the
voltage at bus i . The noise induced by local power variations
ηi is modelled by a time-correlated space-uncorrelated noise,

⟨ηi(t)ηj(t′)⟩ = σ2
i δij exp[−|t− t′|/τi] , (2)

where τi is the typical correlation time of the noise at the ith
node and δij is the Kronecker symbol. Note that one could
also consider space-correlated noise [15], [16]. Here, for the
sake of clarity, we stick to the common assumption of space-
uncorrelated noise and demonstrate how it is affected by the
reduction.

III. TIMESCALE SEPARATION IN THE SWING EQUATIONS

Timescale separation is the rationale underlying the use
of the Kron reduction. We formalize here what is meant
by timescale separation. Then, we present the Mori-Zwanzig
formalism that allows us to deal with the nontrivial impact
of reduced nodes.

A. Timescale Separation and Reduced Dynamics

In view of introducing the Kron reduction of the system,
we assume that we have two sets of buses that we denote
F and S , respectively with NF and NS nodes. Time
scale separation can be summarized in terms of inertia and
damping properties,

di,mi ∝

{
d,m i ∈ F ,

d,m i ∈ S ,
(3)

with d ≪ d , m ≪ m . The latter means that buses belonging
to S have a much slower intrinsic timescale than those
belonging to F . The buses in F are the ones that will be
reduced by Kron reduction.

In the following, we focus on the dynamics of the buses
in the slow component. Within the assumption of timescale
separation, adapting parameter definitions accordingly, one

can rewrite (1) as

mi θ̈i + di θ̇i = pi −
N∑
j=1

bij sin(θi − θj) + ηi , i ∈ S,

ϵ (mi θ̈i + di θ̇i) = pi −
N∑
j=1

bij sin(θi − θj) + ηi , i ∈ F ,

(4)

where we defined m/m = d/d = ϵ−1 . In the limit ϵ → 0 ,
the buses within F instantaneously adapt their phases. In the
following we show how to reduce these buses.

B. System Response and Mori-Zwanzig Analysis
In order to assess the resilience of the system, we want to

analyze the frequency deviation from nominal value when
subject to noise. We therefore consider the system (4) in
the vicinity of a stable fixed point θ∗. In particular, we
are interested in the time-evolution of the phase deviations
xi(t) = θi(t)−θ∗i for i ∈ S and yi(t) = θi(t)−θ∗i for i ∈ F
whose dynamics at the first order read,

M

[
ẍ
ÿ

]
+D

[
ẋ
ẏ

]
=

[
JSS JSF
JFS JFF

] [
x
y

]
+

[
ηS
ηF

]
(5)

where we defined the diagonal inertia and damping matrices,

M =

[
MS 0
0 ϵMF

]
, D =

[
DS 0
0 ϵDF

]
, (6)

and the Jacobian matrix of the system

Jij =

{
bij cos(θ

∗
i − θ∗j ) i ̸= j

−
∑N

k=1 bik cos(θ
∗
i − θ∗k) i = j ,

(7)

which is a Laplacian matrix when phase differences are
between −π

2 and π
2 . Notice that for undirected coupling as

we consider in the following, one has JFS = J⊤
SF .

Ultimately, one would like to obtain a closed-form expres-
sion for the frequency at the generator buses as these are the
state variables relevant for the stability of the grid. To obtain
such expression, one can use Mori-Zwanzig formalism [10],
[11], [12] which was developed in statistical mechanics to
derive the time-evolution of relevant variables while treating
the rest of the variables as input noise. One can follow a
similar approach with x and y being respectively the relevant
and irrelevant variables, see [12] for more details.

For the sake of simplicity, we assume that the inertia and
damping parameters are homogeneous, i.e., mi = m , di = d
∀i . Nevertheless, simulations shown in Sec. V demonstrate
that similar results hold for heterogeneous parameters. One
can express the first row of (5) as,

mẍi + d ẋi =

NS∑
j=1

(JSS)ijxj + (ηS)i +

NF∑
j=1

(JSF )ij yj ,

(8)

with

yi(t) =m−1ϵ−1
NF∑
α=1

e−(γ+Γα)t/2

∫ t

0

eΓαt1 (9)

×
∫ t1

0

[JFSx(t2) + ηF ] ·wαe
(γ−Γα)t2/2dt2dt1wα,i ,



where Γα =
√

γ2 − 4να/(mϵ) and we denoted wα the
eigenvectors of JFF with corresponding eigenvalues να <
0 . Equation (8) is the equation of motion of the relevant
variables. The expressions (8) and (9) provide a general
framework to analyse how the irrelevant variables impact the
relevant ones. In the particular case where the two sets of
variables evolve on different timescales, one can expand (8)
and (9) over the timescale parameter ϵ to perturbatively
calculate the effect of y on x . Here we are interested
in the limit ϵ → 0 and therefore only consider the non-
vanishing leading order in ϵ , which is the zeroth order.
Note however that one could calculate the higher order
correction by a Taylor expansion in ϵ . This limit induces
Dirac-delta distributions between t1 and t and between t2
and t1 in (9) [12]. Indeed, one has,

lim
ϵ→0

m−1/2ϵ−1/2e−(γ+Γα)(t−t′)/2 = να
−1/2δ(t− t′) . (10)

Therefore, noticing that J−1
FF =

∑NF
α=1 να

−1wαw
⊤
α , one can

rewrite (8) in a matrix-vector form as,

M ẍ+D ẋ

= JSS x− JSF J−1
FF JFS x+ ηS − JSF J−1

FF ηF (11)
=: Jred x+ ξ ,

where in the last line we defined the reduced Jacobian
Jred := JSS − JSF J−1

FF JFS , and denoted the noise term
as ξ := ηS − JSF J−1

FF ηF . The reduced Jacobian is still
a Laplacian matrix [8]. The dynamics of the non-reduced
buses is then governed by (11) where the effective noise at
the ith bus is a combination of the noise at the ith bus and of
a superposition of the noise inputs at buses belonging to the
fast component. Therefore, in general ξ is correlated over
the different synchronous generators.

Now that we have performed the reduction using the Mori-
Zwanzig formalism, let’s compare (11) with the conventional
Kron-reduced model. The reduced Jacobian, Jred, is given by
the same expression in both cases. However, with the present
formalism, the validity of this approximation is well-defined
by the underlying assumptions. Since the Kron reduction is
inherently a static analysis method, it does not provide a
clear approach to properly define nodal noise signals. As a
result, uncorrelated inputs, ηS , are often used. These differ
from the noise signal ξ that we have derived in general.

The linear system (11) can be solved by expanding over
the eigenmodes of Jred denoted uα , with corresponding
eigenvalues λα , α = 1, ...NS = |S| . As Jred is also the
negative of a Laplacian matrix, one has that 0 = λ1 ≥ ... ≥
λNS with u1,i = 1/

√
NS . The general solution to (11) is

given by,

xi(t) =

NS∑
α=2

(mΓα)
−1e−(γ+Γα)t/2 (12)

×
∫ t

0

[
e(γ+Γα)t′/2 + e(γ−Γα)t′/2

]
uα · ξ(t′) dt′uα,i ,

for i = 1, ..., NS and where we omitted the first mode in the
sum as any perturbation along it does not modify the system.
In the following we only consider the dynamics orthogonal

to the first mode. Eventually, we are interested in the variance
of the frequency deviations. Using the expression in (12) and
taking its time-derivative, one can calculate the moments of
the frequency deviations.

IV. RESILIENCE OF THE GRID

We are now ready to derive the correction term to the non-
reduced nodes’ dynamics after Kron reduction. Furthermore,
we provide a couple of idealized examples where the impact
of the Kron reduction is rather intuitive.

A. Fluctuations From the Synchronized State

Various characteristics of the response can be used to
determine the resilience of the coupled nodes. When subject
to stochastic inputs, a natural choice is to evaluate the mag-
nitude of the deviations from the synchronized fixed point
by calculating the variance of the frequency deviations. As
discussed in Sec. II, we consider time-correlated noise inputs
with different typical correlation times in each component,
denoted as τF and τS respectively.

The center of inertia variance of the frequency deviations
orthogonal to the zero mode u1 in the slow component is
calculated from (12) and reads, in the long-time limit,

〈
ẋ2
i

〉
COI

:=
〈(

ẋi −N−1
S

NS∑
k

ẋk

)2〉
(13)

=

NS∑
α,β=2

NS∑
j=1

[
Uαβ
ij H(λα, λβ , τS , γ) + Γ

αβ

i H(λα, λβ , τF , γ)
]
,

where we defined the shorthand notations

Uαβ
ij = σS

2
juα,iuα,juβ,iuβ,j ,

Γ
αβ

i = Γαβ uα,iuβ,i ,

Γαβ = u⊤
αJSFJ

−1
FF diag

[
σ2
F
]
J−1
FFJFSuβ ,

(14)

and

H(λα, λβ , τ, γ) =
1
2

[
2γmΛαβ(γτ + 1) + 4γλαλβτ

2 − τΛ2
αβ

](
2γ2mΛαβ + Λ2

αβ

)
(γmτ + λατ2 +m) (γmτ + λβτ2 +m)

,

with

Λαβ = (λα + λβ) , Λαβ = (λα − λβ) . (15)

Fig. 1. Star network configurations showing (a) a load surrounded by
generators and (b) a generator surrounded by loads. Circles represent loads
(fast buses), and squares represent generators (slow buses).

In (13), we set the standard deviation of the ambient
noise in the slow and fast components to σS and σF



Fig. 2. (a) Map of the IEEE 118 Testcase [17] system: slow and fast buses are displayed in blue and orange respectively, and the dots’ sizes represent
the standard deviation of the input noise σi. (b) Variances

〈
ẋ2
i

〉
COI

of the frequency deviation from the center of inertia, obtained through numerical
simulations (solid) for correlated noises ξ (red) and naive noises ηS (blue). They are compared with analytical expressions (dashed) of: the full expression
(red) in (13) and only the contribution of slow nodes (blue). Ornstein-Uhlenbeck noises were used with typical correlation times τi = 0.1 and standard
deviations σi ∈ [0, 0.01].

respectively. We also set distinct homogeneous correlation
times for the noise in each component as τi = τS for
i ∈ S and τi = τF for i ∈ F . While the contribution to
the variance from the additive noise in the slow component
is essentially given by the position of the buses on the
slowest eigenmodes, the effect of the noise coming from
the fast component involves combinations of eigenmodes.
The precise combination depends on the effective reduced
dynamics through Γαβ .

B. Specific Grid Topologies

To get an intuition of the underlying mathematics that
lead (or not) to a discrepancy between the dynamics in the
reduced and full systems, we consider two idealized cases. Of
course, such idealized systems are not really representative
of actual implementations, but they are analytically tractable
and provide insight into the Kron reduction’s behavior.

Let us consider the case of a star graph where a load node
is surrounded by NS generators, as shown in Fig. 1 (a). In
this case, one readily verifies that, provided phase differences
are small,

JSS ≈ −IdNS , JFF ≈ −NS , JSF = J⊤
FS ≈ 1NS ,

(16)

which yields Γαβ ≈ 0 independently of α and β , where we
assumed homogeneous standard deviation for the noise in
the fast component. In such a case, the error induced by the
reduction is rather small.

On the contrary, when a single generator node is connected
to NF loads, as shown in Fig. 1 (b), one gets

JSS ≈ −NF , JFF ≈ −IdNF , JFS = J⊤
SF ≈ 1NF .

(17)

Here, the coefficient Γαβ = σ2NF (if α = β = 1, otherwise
Γαβ ≈ 0) scales linearly with the number of loads. The error
in such a reduced system is typically large.

While the two cases depicted above are quite extreme
and somewhat unrealistic, they provide interesting insights

into situations where reducing a system may lead to more or
less accurate estimates of the frequency variance. To put it
shortly, a reduced node connected to many non-reduced ones
will not lead to a large error, while the opposite is expected
to induce a large error in the estimate. Power grids structures
are typically closer to the latter situation also including
connections between the reduced buses. One therefore ex-
pects a non-negligible impact of the reduced buses on the
synchronous generator dynamics. We numerically confirm
this conjecture in the next section.

V. NUMERICAL ILLUSTRATION

Here we compare the frequency deviations obtained with
the full noise term ξ in (11) and its naive approximation
using uncorrelated noise, i.e., taking into account only ηS .
To illustrate our findings, we use the standard IEEE 118
Testcase [17]. An OPF was used to obtain the initial steady-
state configuration, i.e., phase differences and generators’
outputs. The original test case was augmented with dy-
namical parameters deduced from generators’ and loads’
characteristics, similarly to [18]. For the sake of comparing
numerical results with the theory, dynamical parameters were
uniformized, leading to d = 0.0005 [s] ≪ d = 0.05 [s], and
m = 0.002 [s2] ≪ m = 0.2 [s2].

Figure 2 compares the stochastic differential equation
proposed in this work with the current standard in the
literature, which neglects the contributions from the noise
on the reduced buses. Slow buses were ordered from the
smallest variance according to the naive approach. Fig. 2 (a)
shows the system’s map and the amount of noise present
at each bus. Notice that the system response to the external
inputs is scattered thought it and that the variance is not
directly related to the local noise and thus cannot be deduced
solely from it. Fig. 2 (b) shows the theoretical and empirical
variance with (red) and without (blue) the correction term
of (13). Comparing the red and blue curve, we see that both
measures generally follow the same trend, which depends on
the structure of the system. However, for buses that are in the



Fig. 3. Temporal evolution of frequencies ẋi(t) for a selection of 6 generator buses. Noises are simulated as the naive white noise ηS (blue) and
the corrected correlated noise ξ. These time series were generated with the same σi as in Fig. 2. The approach presented in this work indeed produces
frequency patterns quite different from the naive approach.

bulk of slow buses, the naive approach can yield results that
are not only quantitatively different but even qualitatively
incorrect, leading to a wrong assessment of the system’s
vulnerabilities. As a striking example, bus #2 jumps from
the penultimate position to the forefront.

Following the discussion of Sec. IV-B about specific grid
topologies, we observe that the two buses with the largest
discrepancies, i.e., #2 and #8, are in a starlike load configu-
ration. Bus #2 is isolated from the other slow buses and is
thus affected by the noise of a large number of fast buses.
On the other hand, bus #14 is also in a starlike configuration,
but in its case, most of its neighbors are other slow buses
and are therefore less impacted. We illustrate the striking
discrepancies between naive and corrected trajectories in
Fig. 3.

Up to this point, we have assumed that inertia and
damping were homogeneous. This assumption allowed us
to describe the system dynamics in terms of the eigenvalues
and eigenvectors of the Laplacian matrix and to derive a
closed-form solution thereof, as well as for a resilience
measure. If this assumption is not met, these eigenmodes
are not independent and no direct interpretation can be made.
However, the Mori-Zwanzig reduction is still applicable and
(11) still holds. In Fig. 4, we compare both reduced models,
with and without correlated noise, to the structure-preserving
model [13]. None of the models is quite able to correctly
assess the variances, which is not surprising given that the
system lies beyond the assumptions made here. Nonetheless,
the model developed in this work seems to qualitatively
better capture the system vulnerabilities and is therefore
probably more suitable for use.

VI. CONCLUSION

We have shown that the Kron reduction, commonly used
in power grid modeling, can lead to misleading estimates
of the voltage dynamics. Typically, when the system is
subject to noise, the variance of the voltage frequency can
be significantly underestimated if the impact of reduced
buses is neglected. Such underestimation can be of major

Fig. 4. (a) Inertia coefficients mi. (b) Damping coefficients di. (c) Noise
standard deviations σi. (d) Variances ⟨ẋ2

i ⟩COI computed with the reduced
model consisting of inertial buses with the correlated noise ξ (red) and the
naive approximation ηS (blue), compared with those obtained with the full
structure-preserving model (green).

importance when assessing the robustness of the grid against
disturbances and could lead to safety issues. Accordingly,
we recommend taking the reduced buses into account in
simulations.

To address these limitations of the Kron reduction, we
propose a method to incorporate the impact of the fast buses
on the slow buses. Specifically, we use the Mori-Zwanzig
formalism to derive the equation of motion for the slow
buses as a function of a timescale parameter ϵ . This approach
elucidates how both the dynamics and the inputs at the slow
buses affect the evolution of the slow ones. Expanding at the
leading order in ϵ , we recover for the reduced dynamics the
usual Kron reduced Jacobian matrix. However, even if the
initial inputs are uncorrelated, the effective noise acting on
the non-reduced buses is correlated. In general, the correla-
tion of the noise cannot by neglected. We show for the IEEE



118 Testcase that neglecting the correlation and considering
only the noise coming from the non-reduced buses leads to
a misleading assessment of the vulnerabilities. Therefore, to
accurately evaluate the grid response, one should not solely
use uncorrelated noise at the non-reduced buses but also take
into account the contribution of external inputs at the reduced
nodes. Importantly, our framework gives a way to go beyond
the leading order in ϵ and calculate higher order correction.

Future work should consider a more accurate reduction
for the full structure preserving model. The latter could be
achieved by considering corrections beyond the leading order
in ϵ .

APPENDIX

The numerical simulations were performed with Differ-
entialEquations.jl [19], a Julia package that gathers well-
optimized solvers often benchmarked as some of the fastest
available implementations. Specifically, we used ImplicitEM,
an order 0.5 Ito drift-implicit method with the Trapezoid
method on the drift term. It is particularly suitable for
stiff stochastic differential equations, which power system
dynamics with realistic parameters tend to behave like. To
ensure good agreement between analytical and numerical
results, an upper bound had to be set on the time steps.
Relaxing this constraint renders the scheme significantly
faster, but at the expense of accuracy.
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