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Hypergraph reconstruction from dynamics

Robin Delabays 1, Giulia De Pasquale2, Florian Dörfler3 & Yuanzhao Zhang 4

A plethora of methods have been developed in the past two decades to infer
the underlying network structure of an interconnected system from its col-
lective dynamics. However, methods capable of inferring nonpairwise inter-
actions are only starting to appear. Here, we develop an inference algorithm
based on sparse identification of nonlinear dynamics (SINDy) to reconstruct
hypergraphs and simplicial complexes from time-series data. Our model-free
method does not require information about node dynamics or coupling
functions, making it applicable to complex systems that do not have a reliable
mathematical description. We first benchmark the new method on synthetic
data generated from Kuramoto and Lorenz dynamics. We then use it to infer
the effective connectivity in the brain from resting-state EEG data, which
reveals significant contributions from non-pairwise interactions in shaping the
macroscopic brain dynamics.

Hypergraphs and simplicial complexes have emerged as versatile and
powerful tools for modeling and analyzing complex systems, offering
flexible and expressive representations of higher-order relationships
and dependencies that traditional graphs cannot capture1–5. These
higher-order structures play an important role in a wide range of
dynamical processes, from brain dynamics6,7 to communications in
social systems8,9 and competitions in ecological systems10,11.

Broadly speaking, the analysis of coupled dynamical systems can
go in two directions. On the one hand, it is important to predict the
possible dynamics based onmodel equations and coupling structures.
Many recent studies have taken this approach and investigated how
higher-order interactions can influence collective dynamics12–19 such as
diffusion20, consensus21,22, contagion23,24, synchronization25–29, and
controllability30. On the other hand, the inverse problem is equally
important. Namely, is it possible to recover the coupling structure
from dynamics? This inference problem is important in many fields,
including neuroscience31–34, e.g., infer effective connectivity between
brain regions from functional Magnetic Resonance Imaging (fMRI)
data, and epidemiology35,36, e.g., reconstruct social interactions from
COVID infection data. In neuroscience, for example, hypergraph
inference techniques have been shown to help identify biomarkers in
the autism spectrum disorder, potentially suggesting novel ther-
apeutic interventions for such disorders37.

When considering only pairwise interactions, network inference is
a relatively mature field38–49 and has been approached from numerous

perspectives utilizing diverse tools such as sparse regression50, Baye-
sian inference51, reservoir computing52, causation entropy53, transfer
entropy54, and Granger causality55. In comparison, the study of
hypergraph inference is still in its infancy4. Luckily, progress is hap-
pening rapidly56–60. Some recently proposed methods include prob-
abilistic inference based on prior network data61–63 or binary contagion
data64 and optimization-based methods that apply to time-series
data65. These methods, however, are limited by their strong assump-
tions of the generative process and/or reliance on knowledge of the
model dynamics. When the underlying model is unknown, the litera-
ture on hypergraph inference is rather scarce. To the best of our
knowledge, the only model-free method for the causal inference of
higher-order interactions is the Algorithm for Revealing Network
Interactions (ARNI)44.

Here, we propose the Taylor-based Hypergraph Inference using
SINDy (THIS) algorithm, which reconstructs hypergraphs and simpli-
cial complexes from time-series data. Our method is system-agnostic,
noninvasive, and distributed—it does not require knowledge of the
node dynamics or coupling functions and does not require curating
different nonlinear feature libraries for each application. Neither does
it require perturbing the system in precise ways (e.g., via control input
injection). Moreover, the inference can be made for each node inde-
pendently, making the computation easily parallelizable. Importantly,
themethod takes advantage of the intrinsic sparsity ofmost real-world
hypergraphs through the use of the SINDy algorithm66. We apply THIS
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to both synthetic data generated from canonical dynamical systems
and resting-state EEG data from 109 human subjects. With the syn-
thetic data, we show that THIS can be extremely data efficient and
compares favorably against ARNI in accuracy. From the EEG data, we
find that higher-order interactions play a key role in shaping macro-
scopic brain dynamics (despite most physical connections between
brain regions being pairwise33).

Results
When is hypergraph reconstruction possible?
We consider n nonlinear systems coupled through a hypergraph, as
described by the following equations:

_xi = FiðxÞ = f iðxiÞ +
Xn

j = 1

að2Þ
ij h

ð2Þðxi, xjÞ

+
Xn

j, k = 1

að3Þ
ijkh

ð3Þðxi, xj , xkÞ+ � � � , i= 1, � � � ,n,
ð1Þ

where fi describes the intrinsic dynamics of node i. The adjacency
tensor AðpÞ = faðpÞ

ijk...‘g determines which nodes are coupled through the
p-th order interaction function h(p).

Before developing an inference method, it is helpful to char-
acterize when is inference theoretically possible. For this purpose, we
assume that it is possible to observe all nodes in the system for many
different initial conditions at high resolution without the interference
of noise. In thisperfect and abundantdata limit, the questionbecomes:
Can we determine the hypergraph structure uniquely from the vector
field? When will there be ambiguity? Below, for simplicity and without
lossof generality, weconsider systemswith interactions up to the third
order (i.e., A(p) = 0 for p > 3).

Neuhäuser et al.21 recently pointed out that, for linear consensus
dynamics, pairwise and higher-order interactions are theoretically
indistinguishable from each other. Here, we generalize this observa-
tion to any dynamical systems on hypergraphs (similar arguments can
also be found in ref. 67). If the triadic interaction function h(3)(xi, xj, xk)
canbewritten as a linear combination of pairwise interaction functions
hð3Þðxi, xj, xkÞ=h0ðxi, xjÞ+h00ðxi, xkÞ+h000ðxj , xkÞ for all x, then there is no
formal difference between a 2-simplex and a closed triangle of links. In
other words, for any hypergraph with linearly decomposable interac-
tion functions, we can always find a corresponding network that
generates the same dynamics. As a consequence, hypergraph recon-
struction would be impossible due to such ambiguity. More generally,
if we only have data from a localized region of the state space (e.g., by
observing the system respond to small noise around a fixed point),
inside which the dynamics can be effectively linearized, then it is not
possible to reconstruct the hypergraph from dynamics even when the
interactions are nonlinear.

On the other hand, if a higher-order interaction cannot be
decomposed into a linear combination of pairwise interactions, then it
will produce a vector field that is different from any vector field gen-
eratedwith only pairwise interactions. This difference can, in principle,
be used to infer the existence of higher-order interactions. Next, we
propose a simple strategy to extract this information, which can then
be used to reconstruct the causal hypergraph.

Taylor-based Hypergraph Inference using SINDy (THIS)
In equation (1), one can write the Taylor expansion of the dynamics Fi
around an arbitrary point x0, leading to

_xi � Fi ðx0Þ+
X

j

∂jFiðx0ÞΔxj +
1
2!

X

j, k

∂j, kFi ðx0ÞΔxjΔxk + . . . ð2Þ

with Δxi = xi − x0,i, ∀ i ∈ {1, …, n}. One realizes that, for i ≠ j ≠ k, if the
coefficient ∂j,kFi(x0) is nonzero, then there is necessarily a triadic

interaction involving nodes i, j, and k (more precisely, nodes j and k
would influence node i jointly through a directed triadic interaction).
One can see this by noticing that ∂j, kh

ð2Þðxi, xjÞ=0 for i ≠ k, whereas
∂j, kh

ð3Þðxi, xj , xkÞ is generally nonzero. Our approach utilizes this
observation and aims to infer the nonzero coefficients ∂j,kFi from time
series. Note that since we don’t know the form of the coupling func-
tions, there is no point in inferring the weights of the hyperedges, so
we focus on the binary inference problem. Namely, is there a hyper-
edge or not?

Importantly, this Taylor-based approach is intrinsically system-
agnostic and does not rely on knowing the node dynamics fi or cou-
pling functions h(p). Moreover, the Taylor expansion can be computed
around any point x0 where the vector field is differentiable, rendering
the approach flexible in terms of where data are collected. In rare
circumstances (usually with zero probability), a Taylor coefficient
could vanish when evaluated at x0 even when the corresponding
interaction exists. We can easily circumvent this problem by choosing
a different base point x0.

To recover the coefficients of the Taylor expansion based on a
time series x(t), we use SINDy66 with a library of monomials up to a
chosen degree (seeMethods section for details). The purpose of SINDy
is to find a parsimonious linear combination of the library functions
that best explain the time-series data X = {x(t1), x(t2), ⋯ , x(tK)}. Each
nonzero coefficient obtained by SINDy selects a monomial from the
library, which can in turn be used to infer the corresponding hyper-
edge (note that a monomial of degree p − 1 in the Taylor expansion
corresponds to an interaction of order p). Specifically, we consider a
hyperedge to exist if the coefficient of the correspondingmonomial is
above a prespecified threshold ϵ. The threshold ϵ has overlapping
functionalities with the sparsity parameter in SINDy. Having such a
separate threshold facilitates measuring the quality of the inference –

it allows us todraw theReceiverOperatingCharacteristic (ROC) curves
a posteriori by adjusting ϵ without having to rerun the sparse regres-
sion algorithm multiple times. We illustrate our inference procedure
in Fig. 1.

Our main rationale for using SINDy is that many real-world
hypergraphs are intrinsically sparse. As each nonzero coefficient cor-
responds to a hyperedge, an algorithm promoting sparsity is desirable
inmost cases. Of course, densehypergraphs do exist. However, in such
cases, the actual hypergraph structure has only marginal importance,
asmost phenomena on dense hypergraphs arewell captured bymean-
field approximations. On top of that, there are two additional advan-
tages of using SINDy. First, we can naturally control the trade-off
between sensitivity and specificity of the reconstruction by tuning the
sparsity parameter in SINDy. Second, the SINDy-based approach also
allows us to use mature, off-the-shelf implementations of the algo-
rithm that are user-friendly and highly optimized68. For these reasons,
we focus on the SINDy implementation of our approach in this paper.
However, it is possible to combine our Taylor-based approach with
other data-driven methods, such as Extended Dynamic Mode
Decomposition (EDMD)69.

We would like to emphasize that our inference procedure can be
done independently for each node. Thus, if one is only interested in a
subset of nodes, there is no need to infer the full hypergraph. It also
means that the more nodes there are, the more parallelizable our
method will be, which is important for dealing with high-dimensional
time series from large interconnected systems.

Finally, we remark that THIS has a few similarities with ARNI44.
Indeed, the basic idea of both approaches is to represent the unknown
coupling functions as linear combinations of a set of nonlinear basis
functions. Namely, monomials for THIS and a user-specified function
library for ARNI. However, the ways in which THIS and ARNI identify
the coefficients of the decomposition (i.e., the optimization strategies)
are fundamentally different. For ARNI, the coefficients are determined
by consecutively projecting the time series onto the subspaces
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spanned by the basis functions. THIS, on the other hand, performs
inference through a sparsity-promoting optimizationprocedure. Next,
we compare the performance of the two algorithms under identical
conditions using synthetic data.

Benchmarks on synthetic data
Before applying the new inference method to real-world data, it is
important to benchmark it on synthetic data, for which ground truth is
available to validate the inference. We benchmark THIS on synthetic
data generated from two dynamical systems: a higher-order Kuramoto
model and Lorenz oscillators coupled through nonpairwise
interactions.

Higher-order Kuramoto model. We first compare the inference per-
formance of ARNI and THIS using a generalization of the Kuramoto
model:

_θi =ωi +
Xn

j = 1

að2Þ
ij sinðθj � θiÞ +

Xn

j, k = 1

að3Þ
ijk sinðθj +θk � 2θiÞ, i= 1, . . . ,n , ð3Þ

where θi ∈ S1 represents the phase of oscillator i and ωi is its natural
frequency. As a proof of concept, we start the test with the seven-node
hypergraph shown in Fig. 2. (see SupplementaryFig. 1 for a comparison
between ARNI and THIS on pairwise networks). Samples are taken
randomly and uniformly inside a hypercube of side length δ = 0.1
centered at the origin x0 = 0. One can use hypercubes of side lengths
up to δ= 1.0without affecting the results, see Supplementary Fig. 2. For
each data point, we compute the derivatives directly using Eq. (3).

The output of both inference methods (THIS and ARNI with
power-series basis) is a weighted adjacency tensor A(p) for each inter-
action order p. Then one needs to choose a threshold ϵ such that a
hyperedge is considered present if and only if the corresponding
coefficient in A(p) is greater than ϵ. For a given ϵ, the true positive rate
(TPR) [resp. false positive rate (FPR)] is the percentage of existing
[resp. nonexistent] hyperedges that were inferred. The ROC curves
plot TPR against FPR for all possible threshold values.

In Fig. 2, we show the ROC curves for THIS and ARNI applied to
samples of varying sizes. Among the different ROC curves, we vary the
sample size from 10 to 150 (curves with brighter colors use more data
points). Along each ROC curve, we gradually decrease the inference
threshold ϵ from∞ to 0. Thus, each curve starts at the lower left corner
(0, 0), where no (hyper)edge is inferred, and ends at the upper right

corner (1, 1), where all possible (hyper)edges are inferred. Since we
want high TPR and low FPR, an ideal ROC curve should rise steeply
from the lower left corner to the upper left corner. A diagonal curve is
indicative of performance comparable to randomguesses. We see that
even with just 10 data points, THIS achieves good accuracy in recon-
structing the hypergraph. In contrast, ARNI barely outperforms ran-
dom guesses even with 150 data points.

Our algorithm can handle larger systems as well. Figure 3 and
Supplementary Fig. 5 show that THIS can accurately infer a 100-node
random simplicial complex from generalized Kuramoto dynamics. We
also show similar results for large random hypergraphs in Supple-
mentary Fig. 6.

Lorenz oscillatorswith nonpairwise coupling. Next, we apply THIS to
Lorenz oscillators coupled through pairwise and triadic interactions:

_xi = σðyi � xiÞ +
Xn

j = 1

að2Þ
ij ðxj � xiÞ +

Xn

j, k = 1

að3Þ
ijk ðxjx

2
k � x3

i Þ,

_yi = xiðρ� ziÞ � yi,
_zi = xiyi � βzi,

where we set σ = 10, ρ = 28, and β = 8/3. Here, each node has three
degrees of freedom.We perform inference on the whole system as if it
were a 3n-node system. Then, we aggregate the cross-node interac-
tions: For each pair of nodes, say i and j, we use the largest inferred
coefficient between any degree of freedomof node i and any degree of
freedom of node j as að2Þ

ij . We perform the same procedure to
determine að3Þ

ijk .
In Fig. 4, we show that our method performswell even for chaotic

dynamics and nodes with more than one dimension. Each ROC curve
corresponds to a different five-node hypergraph generated using XGI’s
random_hypergraph function70, with a probability of 0.5 for both
2-edges and 3-edges. For each hypergraph, we use 10 independent
time series for the inference, each consisting of 150 time steps with a
step size δt = 0.01, and we approximate the derivatives through finite
differences. The time series are all initializedwithin a hypercubeof side
length δ = 0.7, centered at a random point x0 chosen uniformly from
[−1, 1]3n. For most hypergraphs, we can reach over 80% TPR with less
than 20% FTR. The performance can be further improved if we use
more data points, optimize hyperparameters such as the sampling box

tim
e

Fig. 1 | Illustration of Taylor-based Hypergraph Inference using SINDy (THIS).
Here, we focus on inferring the couplings received by node i (highlighted in color
on the right). Inference for any other node can be done independently using the
same procedure. For each inference task, the input is the time series measured for
all nodes (left), and the output is the inferred connections pointing towards node i
(right). The key step of the inference is solving the matrix equation _xi =DðX Þvi
(middle). On the left-hand side, _xi = ½ _xiðt1Þ, _xiðt2Þ, � � � , _xiðtK Þ�> is a column vector
consisting of the derivative of xi at different time points. On the right-hand side,

DðX Þ is the data matrix obtained by applying nonlinear features (i.e., the mono-
mials) to the time series, and vi is a sparse vector that approximately solves the
matrix equation. Note that, to be precise, the variables {xi} in DðXÞ should be
interpreted as deviations from the Taylor-expansion base point x0. The nonzero
elements of vi (highlighted with colors) are used to infer the existence of (hyper)
edges. In this example, there is a triadic coupling from nodes ℓ and m to node i
because the coefficient for xℓxm is nonzero.
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size, or calculate the derivatives directly from the underlying Lorenz
equations.

We note that for THIS, the existence of higher-order interactions
could mask the existence of lower-order interactions. This stems
from an unavoidable drawback of relying on the Taylor expansion:
Higher-order interactions also contribute to lower-order Taylor
coefficients. Indeed, the existence of interactions of order p implies
that the corresponding coefficients of order lower than p can be
nonzero as well. In other words, when a p-edge e is present in the
hypergraph, THIS will likely infer some lower-order edges contained
in e even if they did not exist, potentially leading to false positives.
Despite this limitation, THIS performed well in our benchmark with
random hypergraphs (Fig. 4 and Supplementary Fig. 6). We will dis-
cuss practical strategies to further mitigate this issue in the Discus-
sion section.

How important are higher-order interactions in shaping mac-
roscopic brain dynamics?
An important special case of the hypergraph reconstruction problem
is the following: Given time-series data, can we tell whether networks
are adequate to capture the observed dynamics, or are higher-order
interactions truly needed67,71? Answering this question has important
applications in neuroscience: Although different brain regions are
mostly connected through (pairwise) anatomical axons and nerve

fibers, the release of neurotransmitters can potentially induce
higher-order interactions among neuronal populations. So how
important are nonpairwise interactions in shaping the macroscopic
brain dynamics?

Below, we apply THIS to reconstruct the effective connectivity
between seven brain regions using resting-state EEG data from
109 human subjects. For each subject, two independent recordings
were collected, giving a total of 218 time series (see Methods
section for details of the analysis protocol). Interestingly, we find that
non-pairwise interactions account for more than 60% of the EEG
dynamics, and this is robust across brain regions and individual
subjects.

To measure the amount of dynamics that is explained by higher-
order interactions we compute the relative contribution of each
interaction order ℓ to the derivative. Specifically, if âð‘Þ

i1 , :::, i‘
is the
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Fig. 2 | THIS versus ARNI applied to Kuramoto dynamics. We infer the hyper-
graph shown in the top panel. The ROC curves measure the inference quality
considering all orders of interactions (both pairwise and triadic). Each curve cor-
responds to a different sample size used in inference, ranging from 10 data points
(dark purple) to 150 data points (bright yellow). The quicker the ROC curve rises to
the upper left corner, the better the inference. A breakdown of the ROC curves
according to interaction orders is available in Supplementary Fig. 4.
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Fig. 3 | Inference of a 100-node simplicial complex with generalized Kuramoto
dynamics. Each curve corresponds to a different sample size used in inference,
ranging from500datapoints (darkpurple) to 2000datapoints (bright yellow). The
simplicial complex was randomly generated through an Erdős-Rényi-type process:
each 2-edge (resp. each 3-edge including its boundary) exists with probability 1%
(resp. 0.1%).
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Fig. 4 | THIS applied to Lorenz oscillators on random hypergraphs. Each ROC
curve corresponds to the inference of a different five-node randomhypergraph. To
test the robustness of THIS, we made the hypergraphs non-sparse (p = 0.5 for both
pairwise and triadic connections) and estimated derivatives from numerical dif-
ferentiation. Since each Lorenz oscillator has three degrees of freedom, we are
essentially performing inference on a 15-dimensional system.
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inferred adjacency tensor for ℓ-th order interactions, we compute the
ℓ-th order contribution ratio

ρ‘ =

P
i1≠...≠i‘

jâð‘Þ
i1 , ..., i‘

xi2 . . . xi‘
j

Po

k = 2

P
i1≠...≠ik

jâðkÞ
i1 , ..., ik

xi2 . . . xik
j
, ð4Þ

where o is the maximal interaction order considered. Following the
discussion in the Supplementary Information (section S7), here we
take o = 4. The ratios ρℓ can be computed for each time series s and at
each time step t, hence we index the ratios ρℓ(s, t). As we are interested
in the relative contribution from higher-order interactions, we
conveniently denote the ratio of their contribution as
ρ(s, t) = ρ3(s, t) + ρ4(s, t). We then sort the time series according to
their median higher-order ratio ρðsÞ=mediant ρðs, tÞð Þ.

Figure 5 shows the contribution of the second, third and fourth
order interactions to the brain dynamics.We see that the second-order
and third-order interactions are the ones that contribute the most in
shaping the brain dynamics across all inference thresholds. Unlike the
synthetic cases from the last section, here we no longer have access to
the ground truth, which means that we can no longer rely on ROC
curves to pick the optimal threshold value for ϵ. Luckily, Fig. 5 shows
that our finding is robust and not sensitive to the choice of the
threshold value, since the inferred ρℓ stays almost invariant across the
entire plausible range of ϵ.

In Fig. 6, we show the distribution of ρ(s, t). The left-most violin
plot shows the distribution of ρ(s, t) aggregated over all time series and
all time steps, whereas the other violin plots show the distribution for
individual time series from different percentiles (ranked by their
median ratios). Our inference results are robust and consistent across
different subjects: For themajority of the timeseries, between60%and
70% of the dynamics are attributed to nonpairwise interactions. For a
breakdown of the contribution from each interaction order, see Sup-
plementary Fig. 9. The right panel in Fig. 6 shows the six most pro-
minent 3-edges inferred by THIS. Interestingly, all of them involve the
prefrontal cortex, which matches the expectation that the prefrontal
cortex acts as a major information processing center in the brain72. We
confirm that the most prominent 4-edges (not shown in Fig. 6) also
overwhelmingly point toward the prefrontal cortex.

Our finding raises the question about the neurological basis of
higher-order interactions in the brain. Some potential mechanisms for
creating nonpairwise interactions among neuronal populations
include heterosynaptic plasticity, ephaptic transmission, extracellular
fields, and metabolic regulation73,74. Even from purely pairwise struc-
tural connectivity, nonpairwise effective connectivity can naturally
emerge (e.g., through coarse-graining). It is also worth emphasizing
that the goal of THIS is not inferring functional connectivity or struc-
tural connectivity, which have been tackled in a model-free fashion
previously75–77. Instead, we are inferring effective connectivity, in the
same spirit of the dynamic causal modeling paradigm31.

We note that currently there is no consensus on the relative
importance of pairwise versus nonpairwise interactions in shaping the
macroscopic brain dynamics76,78–84. Due to the intrinsic complexities of
the brain and a lack of ground truth, different methods applied to
different neurophysiological datasets can lead to seemingly contra-
dictory results. For example, a recent work82 based on intracranial
encephalography (iEEG) and fMRI data suggests that linear auto-
regressivemodels provide the best fit formacroscopic brain dynamics
in resting-state conditions both in terms of one-step predictive power
and computational complexity. Ref. 76, on the other hand, supports
the existence of higher-order interactions based on partial entropy
decomposition to resting-state fMRI data from human brains. Their
study also suggests that higher-order interactions can encode sig-
nificant bio-makers that distinguish between healthy and pathological
states associated with anesthesia or brain injuries, and they mirror
changes associated with aging. Further studies are needed to clarify
the role of higher-order interactions in the brain. We hope our infer-
ence method can provide a new tool and a novel perspective on this
important open question in neuroscience.

Discussion
The hypergraph reconstruction problem considered here is a special
(but very interesting and important) case of data-driven equation
discovery. Instead of inferring the full equations, we aim to determine
which variables are linked (inferring the hyperedges). Because we only
need to know the causal relationship among the variables, our algo-
rithm is less sensitive to the choice of the nonlinear feature library
(compared to, for example, SINDy). This allows us to work with high-
dimensional and interconnected dynamical systems in a model-free
fashion.

The main strength of THIS is that it can perform robust hyper-
graph inference with minimal prior knowledge of the underlying sys-
tem—we only assume that it can be modeled as a set of coupled
differential equations. Despite the system-agnostic nature of the
method, we do have the ability to incorporate additional information
about the system as it becomes available. For example, if we know that
the underlying hypergraph is a simplicial complex, then we can utilize
the downward inclusion condition to automatically infer all the lower-
order interactions, circumventing one of the limitations of THIS. The
same is true for hypergraphs for which no lower-order interactions
overlap with higher-order interactions (i.e., anti-simplicial complexes
and, to first approximation, random sparse hypergraphs). If one knows
the coupling functions, then this information can be integrated into
the sparse regression step to improve inference.

One limitation of THIS is that the sampling area for data needs to
be well-balanced. Namely, the area should be large enough to ade-
quately explore the system’s dynamics (i.e., go beyond the linearizable
region) but also not too large in order to preserve the accuracy of the
Taylor approximation. As long as this balance is achieved, THIS is fully
flexible in terms of where data came from in the state space. In our
experiments on Kuramoto and Lorenz oscillators, we found that this
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order interactions to the dynamics. We show here the median (plain line), the 25%-

75% quantiles (dark area), and the 10%-90% quantiles (light area) of these con-
tributions over the 218 time series considered. Notice that for any threshold value,
ρ2 + ρ3 + ρ4 = 1. The contribution of each interaction order is fairly consistent across
a wide range of threshold values.
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balance can be achieved for a wide range of sampling box sizes (Sup-
plementary Fig. 2). A practical strategy for picking the right box size is
the following: Instead of guessing one using intuition, we can test the
algorithmover awide range of box sizes and find the plateau for which
the predictions stay stable. Moreover, we often have partial informa-
tion about the connectivity in many applications. For instance, in the
context of predicting missing links85, the majority of the connections
are known. We can utilize this information and tune the box size to
maximize thematch between the inferred connections and the known
connections.

Another potential limitation of THIS, for some applications, is the
computational complexity. In its current form, THIS can be applied to
either a large number of nodes (about 100 nodes for pairwise and
triadic interactions, see Fig. 3) or a wide range of interaction orders
(see Supplementary Fig. 10 for an example of 64 nodes with interac-
tions up to the fourth order), but not both at the same time. We sus-
pect that any other inference algorithmwould face the samedifficulty,
given the combinatorial complexity inherent to theproblem (without a
constraint on the maximum interaction order, one has to search over
exponentially many potential interactions). Therefore, even though
suchnumerical complexity is undesirable for an inference algorithm, it
cannot be avoided without incorporating additional assumptions or
constraints.

Nevertheless, we envision various workarounds to the above
complexity limitation. First, in practice, we are often interested in
inferring interactions up to a certain order. For any fixed interaction
order p, we observe that the number of monomials to consider grows
as np, which is much more tractable than combinatorial growth.

Moreover, to further reduce the computational cost, we can add a
pre-processing step to filter out node pairs with low correlations and
exclude them from the sparse regression calculation. This can effec-
tively reduce the size of the monomial library. Figure 7 shows that
applying this technique allows us to accurately reconstruct a 300-node
random simplicial complex from generalized Kuramoto dynamics. We
also show in Supplementary Fig. 3 that the computational cost of the
algorithm increases with the system size as a power law n4 for inter-
actions up to the third order.

Other modifications could improve THIS by making it more
robust against noise, taking advantage of recent advances in SINDy
algorithms, most notably the Ensemble-SINDy86 and Weak-SINDy87

approaches. Finally, in many applications, one often has to work with
partial measurements. In those cases, it would be important to

combine THIS with data assimilation techniques (e.g., ensemble Kal-
man filter88) to tackle missing variables.

We hope this work will further stimulate the development of
hypergraph inference methods so that we can leverage the torrents of
time-series data gathered in diverse fields to uncover previously hid-
den (higher-order) interactions in complex systems.

Methods
Implementation of SINDy
In THIS, SINDy is implemented with a library of N monomials:

D= f1g∪ fxi j i= 1, . . . ,ng∪ fxixj j i, j = 1, :::,ng
∪ fxixjxk j i, j, k = 1, . . . ,ng∪ � � �

The purpose of SINDy is to find a parsimonious model that best
explains the time-series data X = {x(t1), x(t2),⋯ , x(tK)}. The basic idea is
to solve the matrix equations

_xi =DðX Þvi, i= 1, � � � ,n ð5Þ

with sparse, N-dimensional column vectors vi. The n matrix equa-
tions (one for each node) are independent of each other and can be
solved in parallel. Here, _xi = ½ _xiðt1Þ, _xiðt2Þ, � � � , _xiðtK Þ�> is a K-dimen-
sional column vector consisting of the derivative of xi at different
time points tk (either given as part of the data or inferred from xi).
Each column of the K × N matrix DðX Þ corresponds to a monomial of
the variables, whereas the rows encode different time points. In
solving the matrix equation, we want to balance the goodness-of-fit
(i.e., minimization of the mismatch between _xi and DðX Þvi) with the
sparsity of vi, which is achieved by performing sequential thre-
sholded least square regression on Eq. (5). After solving the
optimization problem, each nonzero element in vi is linked to a
monomial from the library, which can in turn be used to infer the
existence of hyperedges pointing towards node i.

Analysis of the EEG time series
We apply THIS to the resting-state time series from the dataset
reported in refs. 89–91, consisting of 109 subjects, each with two
independent recordings. Each recording lasts one minute, with a
sampling rate of 160 points per second. For each inference, we start
with a 64-dimensional signal obtained from 64 sensors distributed
across the scalp. For the sake of tractability and noise reduction, we

Fig. 6 | Higher-order interactions play a significant role in shapingmacroscopic
brain dynamics. Left panel: The percentage of dynamics (i.e., derivatives) con-
tributed by the inferred nonpairwise couplings, ρ(s, t). See Eq. (4) for the definition
ofρ(s, t). The left-most violin shows thedistributionof ρ(s, t) aggregatedover all 218
time series s and all time t. The five other violins show the distribution of ρ(s, t) for
one time series each. The time series displayed are theoneswhosemedian ratioρðsÞ
is at the 5, 35, 65, and 95 percentiles, respectively. Right panel: Illustration of the

seven brain areas and the six most frequently inferred 3-edges. Interestingly, the
top six hyperedges all point towards Area 1, which roughly corresponds to the
prefrontal cortex (see Supplementary Fig. 7). This makes sense given that the
prefrontal cortex is highly interconnected with the rest of the brain, known to be
involved in awide rangeof higher-order cognitive functions, and considered one of
the key information processing hubs in the brain72.
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divided the sensors into sevengroups according to their proximity and
took the average within each group, reducing the 64-dimensional
signal to a 7-dimensional signal (Supplementary Fig. 7). Each dimen-
sion captures the macroscopic dynamics of one of the seven brain
regions. (We show in the Supplementary Fig. 10 that higher-order
interactions continue to play an important role when we analyze the
full 64-channel EEG data without grouping them into seven brain
regions.) To facilitate approximating the time derivatives through
finite differences (i.e., _xiðtkÞ= ðxiðtk + 1Þ � xiðtkÞÞ=Δt), we apply a low-
pass filter to the 7-dimensional signal, keeping only part of the signal
whose frequency is below ≈ 5[Hz]. Additionally, we normalize the time
series so their standard deviation is 1. This last step is important
because having variances much larger or smaller than 1 induces large
discrepancies in the order ofmagnitude for themonomials of different
degrees, rendering SINDy’s thresholding ill-conditioned. Finally, as
THIS is valid in a restricted domainof the state space, we apply it to the
1000datapoints that are closest to themedian,which effectively tunes
the sampling box size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The EEG data used in this study are available in the PhysioNet
database89–91. The data generated for this study have been deposited
on THIS92 repository: https://doi.org/10.5281/zenodo.10530470.

Code availability
The codes created for this article have been deposited on THIS92

repository: https://doi.org/10.5281/zenodo.10530470.
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