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The analysis of dissipatively coupled oscillators is a challenging problem with high stakes in ac-
tual applications, such as large scale physical systems. Many standard mathematical methods are
not applicable to such systems, due to the lack of symmetry of the network induced by dissipative
couplings. Here we emphasize that the synchronization of coupled oscillators can be equivalently
interpreted as the problem of flow distribution over a network. Based on these equivalent inter-
pretations, we demonstrate a close correspondence between multiple stable synchronous states and
winding cells in systems of dissipatively coupled oscillators. The recently introduced notion of wind-
ing cells, associated to a graph, forms a natural winding partition of the n-torus and capture essential
characteristics of synchronous states in lossless systems. Leveraging the winding partition of the
n-torus, we provide algorithms to compute the synchronous solutions of general networks of coupled
oscillators. Furthermore, we identify three paradoxical behaviors of lossy networked systems, to be
contrasted with the behavior lossless systems. Namely, we show that loop flows and dissipation can
increase the system’s transfer capacity, and that dissipation can promote multistability.
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Synchronization of networked oscillators and
the distribution of flows over a power grid are
equivalent formulations of the same problem.
Over the last decades, major advances in our
understanding of such phenomena were obtained
under the approximation of lossless flows. How-
ever, when dealing with realistic systems, power
flows are subject to resistive losses or, equiva-
lently, coupled oscillators are subject to frustra-
tion. Based on graph theory adapted to the n-
torus, we propose a mathematical formulation for
the analysis of lossy oscillator networks. Fur-
thermore, we identify some paradoxical behav-
iors in these networks and analyze them through
our framework. Our work contributes to the long
history of the analysis of multistability in power
systems.

Synchronization and flow networks. The history
of scientific investigation about synchronization is tradi-
tionally traced back to Huygens’ observation of an ”odd
kind of sympathy” in the XVIIth century [1, Vol. 5,
p. 246]. It is however only in the last decades that
a tractable framework has been developed [2–4], thanks
in particular to the pioneering works of Winfree in the
1960s [5], and Kuramoto in the 1970s-80s [6, 7]. Shortly
thereafter, the problem of synchronization has been em-
bedded in the framework of network systems [8–10], first
based mostly on numerical simulations, evolving progres-
sively towards more and more analytical results [2, 4, 11].
Even in the simplest form of coupled oscillators, the in-
terplay between dynamics and network structures leads
to rich and sometimes unexpected behaviors.

The interactions between synchronizing oscillators is
naturally interpreted as a flow of information or com-
modity between the nodes of a network. This dual in-
terpretation of synchronization and flows is instrumental
in understanding the emerging phenomenon of synchro-
nization. In systems of rotating masses connected by
springs, the interactions is precisely the force exerted by
the springs on the different masses [11, Fig. 1]. The
change in a mass’ position is then related to the imbal-
ance of forces it is subjected to. In high voltage power
grids [12], a rotating turbine in a plant accumulates ki-
netic energy and accelerate if all the power it produces
is not transmitted to its neighboring buses. In motion
planning [13, 14], agents adapt their trajectory with re-
spect to relative position of other agents. The rate of
change of an oscillator’s state is then determined by the
imbalance of the commodity received from or sent to its
neighbors. When the interactions or flows of commod-
ity balance out at each agent, such that all agents have
identical rate of change, then the relative positions of the
agents are constant in time: we say that they are synchro-
nized. There is then a direct link between synchronized
states of coupled oscillator networks and the distribution
of flows on a graph. The natural way a commodity is dis-
patched over a network can be puzzling, to say the least.
It remains challenging and fascinating to understand the
interplay between the complex network structures and
the nontrivial interactions between sources and sinks of
this commodity.

Lossless oscillator networks. One of the simplest
models of synchronization considers a set of oscillators,
each described by a phase θ ∈ S1 ' [−π, π), interacting
with each other through a 2π-periodic coupling, function
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of their phase difference h : [−π, π)→ R,

θ̇i = ωi −
n∑
j=1

aijhij(θi − θj) , i ∈ {1, ..., n} . (1)

In the context of commodity flows, the natural frequen-
cies ωi ∈ R correspond to commodity in- and outputs.
The system evolves on the n-torus Tn = (S1)n and the
underlying network structure is determined by the co-
efficients aij ∈ {0, 1}. These coefficients are nonzero if
and only if oscillators i and j interact. The oscillators
are frequency synchronized (or phase locked) if, at some
point in time, θ̇i = θ̇j , for all i, j. The intrinsic compact
nature of each oscillator’s domain and the continuity of
the coupling function require hij to be nonlinear, and
periodic in the systems of interest here. Whereas linear
networked systems are well-understood [15], the nonlin-
ear nature of the coupling between oscillators can lead to
rich and intricate behaviors [12].

The vast majority of the literature about synchroniza-
tion of coupled oscillators assumes symmetric couplings,
i.e., two coupled oscillators influence each other with the
same strength. In the flow network interpretation, sym-
metric couplings correspond to lossless flows, i.e., the flow
of commodity between i and j contributes with equal
magnitude and opposite sign to each end of the edge
between i and j. Shortly put in mathematical terms,
hij(x) = −hji(−x). Consequences of this strong relation
between hij and hji are in particular: (i) conservation of
the total flow in the system, simplifying the calculation of
the asymptotics of Eq. (1) and; (ii) symmetry of the Ja-
cobian matrix of the system, guaranteeing nice and con-
venient spectral features. The properties of systems with
lossless couplings allowed to derive a long list of results
about their dynamics, namely, conditions for existence
and uniqueness of their synchronous states [11, 16, 17],
multistability [12, 18], and clustering [19, 20], to name
but a few. An approach, common to various works, is
to design a fixed-point iteration [16–18], whose conver-
gence is guaranteed under some convexity properties of
the energy landscape of the system [21, 22]

Challenges in the lossy systems. However, while
the lossless assumption is reasonable in many cases, it
is often not realistic and can lead to inaccurate predic-
tions (e.g., see the power flow problem in the Discussion
and the Methods Sections). In the flow interpretation,
the transfer of a commodity is subject to ”dissipation”
(under the form of friction, resistance, leaks, data loss)
or ”frustration” (e.g., as phase lag), meaning that the
amount sent from i to j is strictly larger than the amount
received by j from i. The importance of understanding
the more realistic case of dissipative couplings motivated
the early work by Sakaguchi and Kuramoto [23, 24] and
is still an active field of research. Recent numerical inves-
tigations [25, 26] as well as analytical studies in regular
systems [27–29] are beginning to shed light on a more

FIG. 1. Projected winding cell partition of the 3-torus
(left) and representation of three equilibria of a spring net-
work (right). Points on the 3-torus are projected on the 2-
dimensional space of angular differences θ2 − θ1 and θ3 − θ2.
A winding number q ∈ Z is associated to each equilibrium,
counting the number of times its angles wind counterclockwise
around the origin. The three dots (left) are equilibria of the
spring network, labeled with their winding numbers q. The
phase synchronous state has all angles identical and therefore
q = 0. Equilibria with q = ±1 are the so-called splay states.
The colored areas in the left panel represent the set of points
with same winding number, i.e., the winding cells, forming a
partition of the 3-torus.

in-depth understanding of dissipative networks. More
generally, the extension of standard approaches to more
realistic systems is gaining momentum in the fields syn-
chronization and complex networks [30–32]

An additional outstanding challenge is that, up to this
day, it is unclear to what extent the properties enjoyed
by lossless networks are preserved in more realistic, dis-
sipative systems. In the global scientific aim of a faithful
modeling of real systems, it is of utmost importance to
decipher the impact of dissipation in standard models of
networked dynamics. Indeed, conditions for existence,
uniqueness, and multiplicity of synchronous states or for
the emergence of clustering in lossless systems [11, 12, 18–
20] are yet to be adapted to their dissipative counter-
part. Furthermore, it is now largely documented [33]
that phase frustration can lead to the occurrence of soli-
tary and chimera states [26, 34–37], that are extensively
studied, but still only partially understood.

Understanding dissipative systems is challenging for a
number of reasons. In such systems, flow conservation
is lost and the linearization of the system typically loses
its symmetry. Furthermore, while Eq. (1) can be for-
malized as a gradient system over an energy landscape
when hij = −hji, this property immediately fails in dis-
sipative systems. Therefore, technical approaches based
upon energy landscapes are not applicable any longer.
Incorporating dissipation in the system even requires to
re-think the intuitive vectorial formulation of Eq. (1), in
order to recognize the directionality of flows. Notice that,
surprisingly, even a clear vectorial form of the dissipative
dynamics is lacking in the literature.



3

Objectives and contributions. Our aim is to de-
velop an analysis framework to characterize the location,
properties, and stability of synchronous solutions of dissi-
pative oscillator networks. In the task of globally charac-
terizing synchronous states of lossless oscillator networks,
an instructive and effective approach has been to leverage
the concepts of winding numbers and winding cells [18].
Given a cycle of oscillators σ = (θ1, ..., θ|σ|, θ1), the asso-
ciated winding number qσ(θ) counts the number of times
the oscillators’ angles wrap around the origin when fol-
lowing σ (a rigorous definition is given in the Results Sec-
tion). A winding cell is a subset of the n-torus Tn whose
points have the same winding number around each cy-
cle. Winding cells form a partition of the n-torus (the
winding partition) and directly result from the network
structure of the system and from the compact nature of
the oscillators’ domain. The concepts of winding num-
bers and winding cells are illustrated in Fig. 1. Note that
winding cells are well-defined in dissipative systems, be-
cause they depend only on the network structure. It is
however still unclear if the relation between stable syn-
chronous states and winding cells, established in Ref. [18]
for lossless systems, is valid.

There are two main contributions in this manuscript.
First, we identify and detail some surprising and para-
doxical behaviors of dissipative oscillator systems, that
have escaped analysis up to this day. Specifically, we
show that, in some cases, increased dissipation can lead
to more robust and more stable systems. We empha-
size the link between these paradoxes and the winding
cells where they occur. Therefore, we argue that the
winding partition provides a clear phase portrait for the
analysis of such behaviors. Motivated by these first ob-
servations, we proceed to the second contribution of this
manuscript. Namely, we provide an analytical, statisti-
cal, and computational understanding of the solutions of
dissipative flow problems. In particular, we show that,
exactly as in lossless networks, there is at most one solu-
tion of the dissipative flow problem in each winding cell.
This at most uniqueness property is rigorously proven for
a small amount of dissipation and verified numerically for
a wide range thereof. Furthermore, we provide a com-
plete understanding of lossy systems on acyclic networks
and give an algorithm computing the unique solution, if
it exists. For general, cyclic graphs, we provide an iter-
ation map that, under technical assumptions, converges
to the unique solution in a given winding cell.

Overall, in this manuscript, we illustrate our findings
with the Kuramoto-Sakaguchi model (see the Methods
section and Refs. [8, 23, 24]). This model is particularly
appealing in our context because it is a natural extension
of the (lossless) Kuramoto model, and the amount of dis-
sipation in the coupling can easily be tuned with a con-
tinuous parameter, namely the phase frustration φ ∈ R.
Nevertheless, our analytical results are valid for a much
broader class of coupling functions hij , that might be of

interest to the dynamical systems and network science
communities.

Remark. In addition to the demonstrations provided,
the framework proposed here is naturally suited to the
analytical study of networked dynamical system with di-
rected interactions. For sake of conciseness and clarity,
we limit our focus to dissipative interactions over undi-
rected edges, but the framework covers naturally any type
of directed interactions. We discuss these generalizations
to a greater extent in the Discussion section.

RESULTS

After a formal definition of the winding partition of
the n-torus, we provide a careful description of a series of
unexpected behaviors of dissipative oscillator networks.
This section culminates with our rigorous mathematical
results. A detailed formalism can be found in the Meth-
ods section and proofs are deferred to the Supplementary
Information.

Algebraic graph theory on the torus.

Our framework is largely inspired by Ref. [18, Sec. 3].
The states of the system of Eq. (1) are points θ in the n-
torus Tn, each component being a point θi of the circle S1.
Comparing points on S1 requires to define angular differ-
ences, which is somewhat arbitrary. In this manuscript,
we use the counterclockwise difference

dcc(θ1, θ2) = mod(θ1 − θ2 + π, 2π)− π ∈ [−π, π) . (2)

Intuitively, the counterclockwise difference is a projection
of the angular difference on the interval [−π, π).

Given a cycle σ = (i1, ..., i|σ|, i1) in a graph G (see
Methods for details), one can calculate the winding num-
ber around cycle σ associated with the state θ ∈ Tn,

qσ(θ) = (2π)−1

|σ|∑
j=1

dcc(θij , θij+1
) ∈ Z . (3)

Three states with different winding numbers are illus-
trated in Fig. 1 for the 3-cycle. Intuitively, the winding
number counts the number of times the angles in θ wind
around the origin when following the cycle σ. Then, given
a cycle basis Σ = {σ1, ..., σc} of the graph, we naturally
define the winding vector associated to a state θ ∈ Tn,

qΣ(θ) = [qσ1
(θ), ..., qσc

(θ)]> ∈ Zc . (4)

Nonzero winding numbers are typically associated to loop
flows [18, 38, 39], i.e., a commodity flow of constant mag-
nitude around a cycle of the network. Such loop flows
occupy line capacity, but do not deliver commodity any-
where.
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FIG. 2. Winding cells and their cohesive subsets, for a cycle of length n = 3. The 3-dimensional plots shows the unfolded
3-torus, where each dimension parametrizes one of the three angles and the winding cells become polytopes. The sides of the
cube have then to be considered as identified (left-right, top-bottom, front-back). (A) The transparent volume is Ω(+1;σ), the
winding cell of winding number q = +1, and the solid volume is the 3π/4-cohesive set, i.e., the subset of Ω(+1;σ) where the
counterclockwise differences do not exceed 3π/4. (B) The transparent volume is Ω(0;σ), the winding cell of winding number
q = 0, and the solid volume is the π/2-cohesive set. (C) The transparent volume is Ω(−1;σ), the winding cell of winding
number q = −1, and the solid volume is the 3π/4-cohesive set. (D) Union of the cohesive sets of the previous panels. A key
result of this manuscript is that there is at most one solution to Eq. (1) in a certain cohesive subset of each winding cell, i.e.,
in each solid volume.

Remark. The winding number is a natural extension to
complex networks, of the quantification of vortex flows
in regular lattices, that arise in statistical physics (e.g.,
superfluids [40] or superconductors [41]). As far as we
can tell, the notion of winding numbers in systems of
coupled oscillators can be traced back to Refs. [42, referee
discussion] and [43].

For a graph with c cycles, a winding vector u ∈ Zc can
be uniquely associated to each state in Tn. Therefore
we can define the winding cell associated with winding
vector u,

Ω(u; Σ) = {θ ∈ Tn : qΣ(θ) = u} . (5)

The counterclockwise difference is bounded, and so are
the winding numbers. There is then a finite number of
winding cells for a given graph G, forming a finite parti-
tion of Tn. See Fig. 2 for an illustration of winding cells
in a cycle of n = 3 oscillators.

Paradoxical behaviors of dissipative systems

Three unexpected behaviors of lossy oscillator net-
works are illustrated in Fig. 3 for the Kuramoto-
Sakaguchi model. The first one is a direct extension of a
phenomenon already noted for lossless systems. The two
other have not been reported to the best of our knowl-
edge.

Paradox 1: Loop flows increase capacity. First,
one would expect the presence of a loop flow (i.e., nonzero
winding number) to reduce the transmission capacity of
the system, because lines are occupied by the aformen-
tioned loop flow. In Figs. 3C and 3F, we see that the so-
lutions with larger winding numbers tolerate larger com-

modity transfer. Even though such observations have
been documented in the past for lossless systems [18, 44],
it remains somewhat counterintuitive.

Paradox 2: Dissipation increases capacity. Sec-
ond, an initial reasoning would suggest that increasing
dissipation would reduce the robustness and reliability of
a system. Indeed, if part of the transmitted commodity is
lost on the way, then more of it needs to be injected and
the system is operated closer to criticality. However, the
relation between dissipation and robustness is not that
simple, as we illustrate in Fig. 3C Indeed, for a nonzero
winding number, the ability of the system to synchronize
can evolve non-monotonously with respect to the dissi-
pation (see solution at q = −1). Such phenomenon is
quite unexpected and, to the best of our knowledge, has
not been reported so far.

Paradox 3: Dissipation promotes multistabil-
ity. Different flow solutions differ by a collection of loop
flows [38], i.e., for some solutions, the lines are more
loaded than for others. Similarly as in the previous para-
dox, one would expect that increased dissipation would
prevent the occurrence of loop flows and therefore of mul-
tiple solutions. However, according to Fig. 3F, a sys-
tem with low dissipation (φ ∈ [0, 0.3]) and low injection
(p ≈ 0) can have fewer solutions than more loaded and
dissipative systems. Indeed, one would assume that lower
loads and lower frustration leads to a larger margin of
freedom in the system. Apparently, this is not necessar-
ily the case and this can be attributed to the underlying
network structure.

The paradoxical behaviors identified above are typi-
cally related to the coexistence of different solutions. As
we show in this manuscript, there is a strong and direct
link between different solutions and the winding partition



5

D E F

A B Cnode

an
gl
e

an
gl
e

node

an
gl
e

an
gl
e

FIG. 3. Illustration of the paradoxical behaviors identified for the Kuramoto-Sakaguchi model on a cycle network (A, B, C) and
a 2-cycle network (D, E, F), with unit coupling weights. (A) Qualitative distributions of flows over a cycle of n = 18 oscillators,
with commodity injection +p (resp. withdrawal −p) at node 16 (resp. 4). The arrows of two different colors visualize different
flow solutions, with different winding numbers. (B) Angles corresponding to the two solutions of (A). One clearly sees that,
for the solution at q = +1, the angles wrap around the circle, but not in the solution at q = 0. (C) Boundaries (colored
curves) of the existence regions for solutions at different winding numbers, in the parameter space of phase frustration φ and
injection magnitude p. The solutions in (A, B) were obtained for (φ, p) = (0.3, 1.0). The darkness of each area in the parameter
space represents the number of existing synchronous states. It is surprising that (i) the solution at q = +1, i.e., with larger
winding number, can carry a larger flow than the solution at q = 0, and (ii) for the solution at q = −1, the maximal tolerated
commodity injection is not monotone in the frustration. (D, E, F): Same (A, B, C) respectively, for the 2-cycle network in
(D). (F) Surprisingly, this network has fewer solutions for light load and frustration, (φ, p) ≈ (0.0, 0.0), rather than for larger
parameter values, e.g., (φ, p) = (0.3, 1.0).

of the n-torus.

Problem setup and solution: Synchronous states
with dissipative couplings

We now formalize the problem of flow distribution in
dissipative networks and present our main formal results.
We provide a summary of the main notation symbols in
the Methods Section (Table I).

Problem setup. Let G be the undirected graph
describing the interactions in of Eq. (1). Each edge
e = {i, j} of G is endowed with two coupling functions,
hij and hji, one for each orientation. For each edge, we
choose an arbitrary orientation, say (i, j). We will refer
to the coupling functions as he = hij and hē = hji, with
ē denoting edge e with reversed orientation.

In our framework, Eq. (1) can be written in vectorial
form as

θ̇ = ω −Boh(B>θ) , (6)

using the incidence matrix B and the out-incidence ma-
trix Bo induced by the chosen orientation. Both matri-
ces are defined in the Methods Section, Eqs. (24) and
(28) respectively. The coupling function h : Rm → R2m

relates a vector of angular differences over the m undi-
rected edges to the flows that are distinct for each edge
orientation, hence h has 2m components,

[h(y)]e = he(ye) , [h(y)]e+m = hē(−ye) . (7)

The edge indices e ∈ {1, ...,m} follow the orientation in-
duced by the incidence matrix B. We refer to the discus-
sion about the Kuramoto-Sakaguchi model in the Meth-
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ods Section for an instructive example of the construction
of Eq. (6).

From now on, it will be convenient to formulate the
problem in terms of angular difference variables ∆ ∈ Rm,
rather than in terms of angle variables θ ∈ Rn. Con-
structing the vector of angular differences ∆ from a vec-
tor of angles θ is straightforward, using the transpose of
the incidence matrix, ∆ = B>θ. The other direction
however is not that direct. Indeed, from a difference vec-
tor ∆, one can recover the associated angle vector θ over
a spanning tree of the graph. Now, the angular differ-
ence vector is consistent with the graph structure only
if some cycle constraints. Namely, over the remaining
edges of the graph e = {i, j}, that are not in the span-
ning tree, the constraint is θi − θj = ∆e + 2πk, k ∈ Z.
The integer multiple of 2π does not matter because the
angles are compact variables over S1. Mathematically
speaking, these cycle constraints can be formalized using
the cycle-edge incidence matrix CΣ associated to a cycle
basis Σ = (σ1, ..., σc) [formally defined in the Methods
section, Eq. (26)]

CΣ∆ = 2πu , (8)

for some winding vector u ∈ Zc.
From now on, we will search for stable synchronous

states of Eq. (6). Formally, we assume that, in a neigh-
borhood of the origin, both he and hē are strictly increas-
ing, and for each edge e of G, we require |∆e| ≤ γe, such
that h′e(∆e), h

′
ē(−∆e) > 0. Following Gershgorin Circles

Theorem [45, Theorem 6.1.1], under these assumptions,
the spectrum of the system’s Jacobian matrix lies in the
left complex half-plane. The vector of angular differences
is then restricted to the hypercube

R(γ) =
⋂
e∈E

[−γe, γe] ⊂ Rm . (9)

The set of points θ ∈ Tn whose angular differences along
the edges of G are in R(γ) is referred to as a γ-cohesive
set. The solid volumes in Fig. 2 show the intersections
of the various winding cells of a 3-cycle and R(γ) for
different values of γe.

Gathering the above observations, we formulate the
following problem, whose solutions are in one-to-one cor-
respondence with synchronous states of Eq. (6).

Problem statement (Dissipative Flow Network).
Given a connected graph G with n nodes, m edges, and
cycle basis Σ, a vector of natural frequencies ω ∈ Rn,
and appropriate coupling functions he, hē, associated to
each edge e, find a solution ∆ ∈ R(γ) of

Boh(∆)− ω = ϕ1n , (10a)

CΣ∆ = 2πu , (10b)

for some synchronous frequency ϕ ∈ R and winding vec-
tor u ∈ Zm−n+1.

In contrast with previous works on lossless systems,
the flow map he is not odd, meaning that we do not im-
pose the constraint he(θi− θj) = −hē(θj − θi), hence our
need of the out-incidence matrix Bo instead in Eq. (10a).
Note that, even though in our example of the Kuramoto-
Sakaguchi model all coupling functions are identical, in
full generality, we allow he 6= hē.

Solution for acyclic graphs. In the case where G is
acyclic, we show that there is at most a unique solution
to the Dissipative Flow Network Problem. Here there
are obviously no cycle constraint and thus Eq. (10b) is
trivially satisfied.

Theorem 1. Consider the Dissipative Flow Network
Problem on a connected acyclic undirected graph G. Then
there is at most one ∆ ∈ R(γ) that satisfies Eq. (10a).

The proof of Theorem 1 proceeds recursively and we
provide it in the Supplementary Information. An imple-
mentation of an algorithm deciding the existence of the
unique solution is provided online [46].

Remark. Theorem 1 is the dissipative version of [18,
Theorem 2.2]. The spirit of Theorem 1 is somewhat sim-
ilar to Ref. [25, Sec. V], even though therein, the authors
restrict their investigation to the Kuramoto-Sakaguchi
model and cannot extend their approach to more general
couplings.

Solution for general graphs. The presence of cy-
cles in the network can induce the existence of multiple
solutions to the Dissipative Flow Network Problem (see
Fig. 3 or [25]). We rigorously show here that winding vec-
tors characterize these solutions for sufficiently moderate
dissipation.

To do so, we define the flow mismatch iteration Sε over
the space of angular differences Rm, whose fixed points
are exactly the solutions of Eq. (10a). Namely, let

Sε : Rm → Rm

∆ 7→∆− εB>L† (Boh(∆)− ω) ,
(11)

where ε > 0 is a small step size and L† is the pseudoin-
verse of the graph Laplacian matrix. The flow mismatch
iteration Sε updates the vector of angular differences ac-
cording to the mismatch between the input/output of
commodities ω and the distribution of flows that cor-
responds to the current angular differences. It has two
major properties:

(I) the vector ∆∗ ∈ R(γ) is a fixed point of Sε if and
only if it is a solution of Eq. (10a);

(II) the map Sε leaves each winding cell invariant, be-
cause CΣB

> = 0. It means that fixing the winding
vector of the initial conditions, imposes the winding
vector of the fixed point of Sε, if ever it exists.
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One of the main lessons from Ref. [18] is that differ-
ent solutions of the flow network problem on the n-torus
are better understood when put in the context of their
winding cell. Accordingly, and thanks to the property
(II) above, we split the Dissipative Flow Network Prob-
lem in each winding cell of the n-torus induced by the
network structure. Fixing a winding vector u ∈ Zm−n+1,
we are guaranteed that if the initial conditions ∆0 satisfy
Eq. (10b), then each following iteration ∆k+1 = Sε(∆k)
will satisfy it as well.

We summarize the above observations in the follow-
ing theorem, whose proof is a direct consequence of the
compactness of R(γ).

Theorem 2. If the flow mismatch iteration Sε is con-
tracting, then there is at most one synchronous state of
Eq. (1) in each winding cell.

In what follows, we provide sufficient conditions for
contractivity of Sε. For each edge e of G, we need to
decompose the pair of coupling functions (he, hē),

hod,e(x) = [he(x)− hē(−x)]/2 , (12)

hev,e(x) = [he(x) + hē(−x)]/2 . (13)

One can verify that hod,e (resp. hev,e) is an odd (resp.
even) function and that he = hod,e + hev,e. Intuitively,
hev,e quantifies to what extent the coupling is dissipative.
In the particular case where the coupling is lossless [i.e.,
he(x) = −hē(−x)], then hev,e = 0.

Equipped with this decomposition of the couplings, we
define two state dependent matrices, for x ∈ R(γ):

(a) the odd weighted Laplacian, which is the Laplacian
matrix of G weighed by the derivatives of the odd
parts

Lo(x) = B · diag[h′od,e(xe)] ·B> . (14)

We emphasize that the choice of orientation for
each edge e does not matter in the definition of
Lo. Also, the graph G being connected and the
coupling functions being strictly increasing implies
that λ2, the smallest nonzero eigenvalue of Lo is
necessarily positive;

(b) the even weighted degree matrix, which is the diag-
onal matrix weighted by the absolute derivatives of
the even parts,

[De(x)]ii =
∑
e∈Ei

|h′ev,e(xe)| , (15)

where Ei is the set of (undirected) edges incident to
node i. The diagonal terms of De quantify the dissi-
pativity of the couplings. In particular, for lossless
couplings, De = 0.

Example. In the case of the Kuramoto-Sakaguchi
model, the coupling functions are

he(x) = hē(x) = sin(x− φ) + sinφ , (16)

and trigonometric identities yield

hod,e(x) = cosφ sinx ,

hev,e(x) = sinφ(1− cosx) ,
(17)

which we illustrate in Fig. 5B. We clearly see here the
relation between hev,e and the dissipativity or frustra-
tion of the coupling. When φ = 0, we recover the origi-
nal Kuramoto model, where the coupling is lossless, and
hev,e = 0.

We are now ready to formulate the main theorem of
this work. It clearly separates the impact of network
connectivity, that promote the contractivity of Sε, and
of the dissipation, that works against contractivity of Sε.
We defer the proof to the Supplementary Information.

Theorem 3. Given a Dissipative Flow Network Prob-
lem, define the odd weighted Laplacian Lo and the even
weighted degree matrix De. If, for all i ∈ {1, ..., n},

sup
x∈R(γ)

(De)ii < inf
x∈R(γ)

λ2(Lo) , (18)

then there exists a sufficiently small step size ε > 0 such
that the flow mismatch iteration Sε [Eq. (11)] is contract-
ing.

The left-hand-side of Eq. (18) quantifies the the
amount of dissipation that is ”seen” at each node of the
network, which vanishes for lossless couplings. The right-
hand-side accounts both for the strength of the coupling
between each pair of oscillators, through the weights, and
for the connectedness of the graph, λ2 being the algebraic
connectivity [47]. Under our assumptions [G is connected,
couplings are strictly increasing on R(γ)], the right-hand-
side of Eq. (18) is necessarily positive. For couplings
with sufficiently low dissipation, Eq. (18) is then satis-
fied, which, combined with Theorem 2, yields the follow-
ing corollary.

Corollary 4. If Eq. (18) is satisfied, then there is at
most a unique synchronous state of Eq. (1) in each
winding cell. The number of synchronous states is then
bounded from above by the number of winding cells.

Theorem 3 and Corollary 4 give a rigorous, even
though conservative, sufficient condition for the at most
uniqueness of synchronous states in each winding cell.
However, computing the eigenvalues of the odd weighted
Laplacian can be time consuming. We therefore propose
some lower bounds on λ2(Lo) in the Supplementary In-
formation that are state-independent and may ease the
verification of Eq. (18). The bounds are adapted from
standard results of algebraic graph theory. The proofs
are given in the Supplementary Information, Prop. 7.
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DISCUSSION

Theorem 1 and Corollary 4 rigorously prove that, in
each winding cell of the n-torus, there is at most a unique
synchronous solution for dissipative networks of oscilla-
tors. In acyclic networks, the whole n-torus is trivially
the unique winding cell, and there is therefore at most
one solution to the Dissipative Flow Network problem
(Theorem 1), independently of the amount of dissipa-
tion. For systems over more general, cyclic graphs, the
winding partition provides a natural decomposition of
the n-torus in subsets containing at most one solution.
These results are a straight generalization of Ref. [18] to
dissipative systems.

Even though the relation established in Corollary 4 is
formally valid for relatively small amounts of dissipation,
numerical experiments did not lead to any counterexam-
ple. Indeed, we empirically observed for a large range
of network structures, frustration parameters, and initial
conditions, that the flow mismatch iteration Sε [Eq. (11)]
can always be made contracting by taking a sufficiently
small value of ε > 0. We therefore conjecture that Corol-
lary 4 is rather conservative and that the at most unique-
ness property therein is valid for a much broader range of
dissipation-to-coupling ratio. Furthermore, the compari-
son between coupling and dissipation in Eq. (18) clearly
pinpoints how dissipation works against synchronization.

Both the proofs of Theorem 1 and Corollary 4 are al-
gorithmic by nature. Namely, the proof of Theorem 1
considers recursively the flows on the edges of the acyclic
graph, and Corollary 4 relies on the iteration map Sε
[Eq. (11)]. It is therefore straightforward to actually
implement the proofs as routines, which we provide on-
line [46].

The paradoxes illustrated in Fig. 3 emphasize that the
introduction of dissipation in the coupling between os-
cillators has a nontrivial and surprising impact of the
dynamics. The fact that both loop flows and dissipation
can increase the transmission capacity of a system (Para-
doxes 1 and 2) is arguably counterintuitive. We remark
that both Paradoxes 1 and 2 occur for solutions with
nonzero winding numbers (q = +1 and q = −1 respec-
tively). It is also quite unexpected that more loaded and
dissipative systems can possess more flow network solu-
tions for a given network structure (Paradox 3). Again,
this last paradox involves solutions in different winding
cells. All paradoxes identified in Fig. 3 are strongly linked
to solutions with nontrivial winding numbers. A gen-
eral and thorough description of the different operating
states of dissipative networks of oscillators then requires
to tackle these systems through the prism of the winding
partition.

The last decades have seen a large scale effort of the
complex systems community to provide an analytical de-
scription of the power flow equations and of their solu-

tions (see the Methods Section). In 1972 already, Korsak
showed [42] that, mathematically speaking, the power
flow equations tolerated multiple solutions on cyclic net-
works. Since then, there has been a plethora of evidence,
both analytical and numerical, that the power flow equa-
tions allow the coexistence of different solutions [12, 48–
51]. Even some ”real-world” events advocate in this
direction [52, 53]. However, a large proportion of the
work mentioned above relies on the lossless line assump-
tion, namely, neglecting dissipation, voltage amplitude
dynamics, and reactive power flows. Recently, there has
been a common effort in trying to pursue a more realistic
mathematical analysis of power grids, by incorporating
reactive power flows [16, 17], voltage amplitude dynam-
ics [54, 55], and dissipation [25, 26]. Despite all this work,
there is still no clear extension of the winding partition
to the full active-reactive power flows, even though there
are some notable related preliminary works [56, 57]. Our
results are an advance in the aforementioned collective
effort.

To put our results in perspective with the resolution
of the power flow equations, we solved both the Dissipa-
tive Flow Network Problem and the power flow equa-
tions on an adapted version of the IEEE-RTS96 test
case [46, 58]. In Fig. 4, we compare synchronous states of
the Kuramoto-Sakaguchi model (panels B and C, inner
circle), with the corresponding solutions of the full power
flow equations (panels B and C, outer annulus). We elab-
orate on the resolution of the full power flow equations
in the Methods Section. First of all, one clearly sees
that the main qualitative features (e.g., winding number,
cohesiveness, clustering) of the power flow solutions are
captured by the corresponding synchronous states of the
Kuramoto-Sakaguchi model. Furthermore, it is remark-
able that two solutions to the full power flow equations
coexist, satisfying all voltage amplitude constraints as
well as voltage angle stability. This example shows that
loop flows and the winding partition are a fundamental
features of power flow solutions. Our work is a contribu-
tion to the joint and long lasting effort in the quest an
accurate mathematical analysis of power grids, which is
a landmark in the area of power grids analysis.

We trust that the notion of winding partition has
the potential to contribute elucidating many open prob-
lems in the fascinating phenomenon of synchronization
in complex networks. We reiterate that even though
we restricted our discussion to bidirected interactions for
sake of clarity, the whole framework developed in this
manuscript naturally applies to any system with directed
interactions. Namely, our formalism is a first step to-
wards a unified analysis of synchronization in any net-
work of coupled oscillators, no matter the nature of the
interactions.



9

A B C

FIG. 4. Comparison of the power flow solutions and Kuramoto-Sakaguchi synchronous states on the IEEE RTS-96 test
case [58]. (A) Geographic representation of the system. Circles are loads and squares are generators. The network is composed
of n = 73 nodes, m = 108 edges, and therefore c = 36 independent cycles. The long cycle with thick edges is of particular
interest, because its length promotes the existence of loop flows while keeping angular differences small (see Refs. [38, 39] for
an extended discussion). (B, C) Combined representations of: (outer annulus) the complex voltages for solutions to the full
power flow equations for an adapted version of the RTS-96 test case; (inner circle) the phase angles of synchronous states of
the Kuramoto-Sakaguchi model on the same system. For sake of readability, only the values of the nodes around the long cycle
of panel A are represented. The outer annulus represents the tolerated margin of variation for the voltage amplitudes in the
power flow equations. The power flow solution in panel B has a nonzero winding number (q = +1) and there is a reasonable
correspondence (ordering, clustering) between its voltage phases and the angles of the Kuramoto-Sakaguchi synchronous state.
Similarly, both the power flow solution and the Kuramoto-Sakaguchi synchronous states in panel C have zero winding number,
with all angles in relatively short arc. There are indeed two distinct solutions of the power flow equations on this version of
the IEEE RTS-96 test case.

METHODS

We first provide the necessary grounds of directed
and undirected graph theory, as well as a link between
them. We refer to Ref. [15] for an extended discussion
about graph and digraph theories. We then discuss the
Kuramoto-Sakaguchi model and its link with the power
flow equations.

Directed graphs.

A directed graph (or digraph) Gd is the pair (V, Ed)
composed of a set of vertices (or nodes) V = {1, ..., n}
and a set of directed edges Ed ⊂ V×V, which are ordered
pairs of vertices. For an edge e = (i, j) ∈ Ed, i is the
source of e, denoted se, and j is its target, denoted te, i.e.,
e = (se, te). We denote the edge with opposite direction
as ē = (te, se). The existence of edges is encoded in the
graph’s adjacency matrix

(Ad)ij =

{
1 , if (i, j) ∈ Ed ,
0 , otherwise.

(19)

The out-degrees (resp. in-degrees) are obtained as do =
Ad1 (resp. di = A>d 1). The out- and in-degrees are gath-
ered in the out- and in-degree matrices Do = diag(do)
and Di = diag(di). We define the Laplacian matrix of
Gd as Ld = Do − Ad. For a digraph with n vertices and

m directed edges, we define the n×m incidence matrix

(Bd)ie =

 1 , if e = (i, j) for some j ,
−1 , if e = (j, i) for some j ,
0 , otherwise,

(20)

which we decompose in positive and negative parts, re-
ferred to as out- and in-incidence matrices respectively,

Bo = [Bd]+ , Bi = [Bd]− , (21)

such that Bd = Bo −Bi.
We notice the following relation, the fourth being un-

known as far as we can tell.

Proposition 5. The adjacency matrix Ad, the out- and
in-degree matrices Do and Di, and the Laplacian matrix
Ld of a directed graph can be written in terms of its out-
and in-incidence matrices Bo and Bi:

Do = BoB
>
o , Di = BiB

>
i ,

Ad = BoB
>
i , Ld = BoB

> . (22)

Proof. The proofs for the adjacency matrix Ad and for
the degree matrices Do and Di can be found in [59, Lem.
3.1 and Lem. 4.1]. The proof for the Laplacian matrix
directly follows,

Ld = Do −Ad = BoB
>
o −BoB

>
i

= Bo(Bo −Bi)
> = BoB

> . (23)
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Symbol Name/Description
V Set of vertices.
G, E Undirected graph, undirected edge set.
B, L Incidence, and Laplacian matrices of

an undirected graph [Eq. (24)].
CΣ cycle-edge incidence matrix of the set

of cycles Σ [Eq. (26)].
Gd, Ed Directed graph, set of directed edges.
Gb Bidirected counterpart of the undirected

graph G.
Eb Set of directed edges of the directed

counterpart graph Gb.
se, te Source and target of edge e.
ē Edge e with opposite direction.
do
i , d

i
i Out- and in-degree of vertex i.

Ad, Bd, Ld Adjacency, incidence, and Laplacian
matrices of a digraph [Eqs. (19),(20)].

Bb Incidence matrix of a bidirected graph.
Bo, Bi Out- and in-incidence matrices of a

digraph.

θ = (θ1, ..., θn)> Vector of phase angles.
ω = (ω1, ..., ωn)> Vector of natural frequencies.
aij , φ Coupling strength and phase

frustration between nodes i and j.
γe Bound on the angular difference over

the edge e.
he, hē Coupling functions over the edge e.
hod,e, hev,e Odd and even parts of the coupling

over edge e [Eq. (12),(13)].
hγ Extended flow function [Eq. (47)].
R(γ) Domain of bounded angular

differences [Eq. (9)].
qΣ Winding map for the cycles in Σ

[Eq. (4)].
Ω(u; Σ) Winding cell with winding vector u in

the graph G [Eq. (5)].
Sε Flow mismatch iteration [Eq. (11)].

TABLE I. List of symbols.

Remark. The same proof is straightforwardly adapted
to weighted directed graphs.

Undirected graphs.

An (undirected) graph G is a pair (V, E) composed of
a set of n vertices (or nodes) V = {1, ..., n} and a set
of m edges, which are unordered pairs of vertices, E ⊂
{{i, j} : i, j ∈ V}. A cycle of G is an ordered sequence of
vertices σ = (i0, i1, ..., i` = i0), such that {ij , ij+1} ∈ E
and ij 6= ik for any j, k ∈ {1, ..., `}.

Let us now choose an arbitrary orientation [(i, j) or
(j, i)] for each undirected edge {i, j} ∈ E . We can then
define the incidence matrix of G,

Bie =

 1 , if e = (i, j) for some j ,
−1 , if e = (j, i) for some j ,
0 , otherwise.

(24)

The Laplacian matrix of G can be computed as L =

BB>. Note that the incidence matrix is not unique and
depends on the choice of edge orientations, whereas the
Laplacian does not. Given a cycle σ = (i0, i2, ..., i`), we
define the cycle vector vσ ∈ {−1, 0,+1}m, indexed by
edges, as

(vσ)e =

 +1 , if e = (ik−1, ik) for some k ,
−1 , if e = (ik, ik−1) for some k ,
0 , otherwise.

(25)

The cycle space of G is the span of the cycle vectors of all
cycles of G, which is equivalently defined as the kernel of
the incidence matrix B. A set of cycles Σ = {σ1, ..., σc}
is a cycle basis of G if and only if the set of corresponding
cycle vectors forms a basis of the cycle space.

Finally, given a cycle basis Σ of the graph G, we define
the cycle-edge incidence matrix,

CΣ = (vσ1
, · · · ,vσc

)
> ∈ Rc×m . (26)

Bidirected graphs

Dissipative couplings intrinsically require to distin-
guish the two orientations of each edge. Given an undi-
rected graph G = (V, E), its bidirected counterpart is the
directed graph Gb = (V, Eb) with the same vertex set V
and where each undirected edge {i, j} ∈ E is doubled in
the set of directed edges (i, j), (j, i) ∈ Eb. A bidirected
graph is a directed graph induced by an undirected graph.

If the undirected graph G has incidence matrix B ∈
Rn×m [Eq. (24)], then, with an appropriate indexing of
the directed edges, the incidence matrix of Gb can be
written as Bb = (B,−B) ∈ Rn×2m. Interestingly, we
note that the Laplacian matrices of G and Gb are the
same, namely (see Prop. 5),

L = BB> = Lb = BoB
>
b , (27)

where the out-incidence matrix Bo = [Bb]+ is the posi-
tive part of Bb. Notice that here,

Bo = ([B]+, [B]−) . (28)

The Kuramoto-Sakaguchi model

We illustrate the results of this manuscript with the
generalized Kuramoto-Sakaguchi model [8, 23, 24],

θ̇i = ωi −
n∑
j=1

aij [sin(θi − θj − φ) + sin(φ)] , (29)

for i ∈ {1, ..., n}, where θi ∈ S1 and ωi ∈ R are respec-
tively the phase angle and the natural frequency of the
i-th oscillator, φ ∈ (−π/2, π/2) is the phase frustration
between oscillators, and aij ∈ R is the coupling strength
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A

B

FIG. 5. (A) Comparison between coupling functions for Ku-
ramoto [dashed dark blue, he(x) = sin(x)] and Kuramoto-
Sakaguchi [plain cyan, he(x) = sin(x − φ) + sinφ], with
φ = 0.5. The light green curve illustrates the coupling
on the same edge, but with opposite orientation [hē(−x) =
sin(−x − φ) + sinφ]. The thick parts (cyan and green) em-
phasize the region where the curve is increasing (resp. de-
creasing). The shaded gray area shows the interval where the
coupling in both orientations is strictly monotone. (B) Odd
(cyan) and even (green) parts of the Kuramoto-Sakaguchi
coupling function, as defined in Eq. (17).

between oscillators i and j. The Kuramoto-Sakaguchi
model directly translates to the framework of Eq. (1),
with hij(x) = sin(x − φ) + sinφ, for all e ∈ Eb, and is a
natural extension of the original Kuramoto model, which
is recovered for φ = 0. The coupling function of the
Kuramoto-Sakaguchi model is illustrated in Fig. 5A.

Remark. While in its original formulation, the
Kuramoto-Sakaguchi model assumes homogeneous, all-
to-all couplings, here we take the couplings to be given by
an underlying network structure. For the sake of simplic-
ity, in our examples we consider aij = aji and φij = φji
for all connected nodes i and j. Nevertheless, we keep
in mind that these assumptions are not necessary for our
results and that our framework is adapted for much more
general cases.

In order to illustrate some fundamental complications
that arise in the Kuramoto-Sakaguchi model, compared
to the original Kuramoto model, we detail two simple
examples below.

Example (2-node system, vectorial form). Consider a
system of two coupled Kuramoto-Sakaguchi oscillators
with unit coupling and identical frustration, whose dy-

namics is given by

θ̇1 = ω1 − [sin(θ1 − θ2 − φ) + sinφ] ,

θ̇2 = ω2 − [sin(θ2 − θ1 − φ) + sinφ] ,
(30)

with φ ∈ (−π/2, π/2).
In the Kuramoto model (φ = 0), it is standard to write

the dynamics in vectorial form as

θ̇ = ω −B sin
(
B>θ

)
, (31)

where B ∈ Rn×m is the incidence matrix of the (undi-
rected) coupling graph of the system. In the Kuramoto-
Sakaguchi model, this vectorial form is not that simple.
Direct computation shows that writing

θ̇ = ω −B
[
sin
(
B>θ − φ1m

)
+ sinφ1m

]
, (32)

does not yields the desired Eqs. (30).
In order to write this model in vectorial form, we need

to distinguish the two orientation of each edge and con-
sider Gb, the bidirected counterpart of G. One can verify
that Eqs. (30) can be written as

θ̇ = ω −Bo

[
sin
(
B>b θ − 12mφ

)
+ 12m sinφ

]
, (33)

where Bo and Bb are the out-incidence matrix and the
incidence matrix of the bidirected coupling graph.

Example (6-node cycle, sync. frequency). Let us con-
sider six Kuramoto-Sakaguchi oscillators, coupled in a
cycle, with identical, vanishing natural frequency, i.e.,

θ̇i = − sin(θi − θi−1 − φ)− sin(θi − θi+1 − φ) + 2 sinφ ,
(34)

for i ∈ {1, ..., 6}, where we used periodic indexing. One
straightforwardly verifies that θ0 = (0, ..., 0)> is an equi-
librium of Eq. (34) (and then a synchronous state).

One can also verify that the splay state θ1 =
(0,−π/3,−2π/3, π, 2π/3, π/3)> is also a synchronous
state. Indeed, in this case, Eq. (34) gives

θ̇i = − sin(−π/3− φ)− sin(π/3− φ)− 2 sinφ

= 2 cos(π/3) sinφ− 2 sinφ = − sinφ ,
(35)

independently of i ∈ {1, ..., 6}. The state θ1 is then syn-
chronous, but it is an equilibrium only for the Kuramoto
model (φ = 0).

There are at least two main messages that can be taken
from these examples. First, by extending our framework
to directed graphs, we are able to write the Kuramoto-
Sakaguchi model in vectorial from,

θ̇ = ω −Bo

[
sin(B>d θ − φ) + sin(φ)

]
. (36)

Note that a similar vectorial formulation of the
Kuramoto-Sakaguchi model has recently been proposed
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in Ref. [60], which, while more general than Eq. (36),
does not provide as much insight in the underlying net-
work structure.

Second, unlike the Kuramoto model, the average fre-
quency of the system is not preserved along arbitrary tra-
jectories. Also, if multiple synchronous states exist, then
they have, in general, different synchronous frequencies.
These claims are backed up by showing that the average
frequency of the system depends on angular differences,∑

i

θ̇i =
∑
i

ωi −
∑
i,j

aij sinφ [1− 2 cos(θi − θj)] , (37)

which is time varying over the trajectories of the system,
and not identical for different synchronous states.

On top of that, we reiterate that, contrary to the Ku-
ramoto model, the Kuramoto-Sakaguchi model is not the
gradient of any function (even locally). Therefore, the en-
ergy landscape approaches, valid for φ = 0 [12, 22], are
not directly applicable to φ 6= 0.

The power flow equations

Under the assumption that voltage amplitudes are
fixed, synchronous states of the Kuramoto-Sagauchi
model are in direct correspondence with the solutions
of the active power flow equations [12, 61]. The power
flow equations relate the the balance of active (Pi) and
reactive powers (Qi) to the voltage amplitude (Vi) and
phase (θi) at each node i ∈ {1, ..., n},

Pi =

n∑
j=1

ViVj [Bij sin(θi − θj) +Gij cos(θi − θj)] , (38)

Qi =

n∑
j=1

ViVj [Gij sin(θi − θj)−Bij cos(θi − θj)] , (39)

with Gij and Bij being lines conductance and suscep-
tance respectively. Defining

aij = ViVj

√
B2
ij +G2

ij , φij = arctan(−Gij/Bij) ,
(40)

one verifies that solutions of Eq. (38) are steady states of
Eq. (29).

Eqs. (38) and (39) are usually solved by iterative meth-
ods. In Fig. 4(B) and (C), outer annulus, we used
a Newton-Raphson scheme [62, Sec. 6.4] with differ-
ent, carefully chosen initial conditions to solve the full
power flow equations on our version of the IEEE-RTS96
test case [58]. The squares are PV buses, the circles
are PQ buses, and the slack bus is node 23. The syn-
chronous states of the Kuramoto-Sakaguchi models were
computed by the flow mismatch iteration Sε [Eq. (11)],
with ε = 0.01.
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edited by M. Nijhoff (Société hollandaise des sciences,
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SUPPLEMENTARY INFORMATION

Proof of Theorem 1

Without loss of generality, let us renumber the nodes such that node 1 is a leaf, and such that, for all i ∈ {2, ..., n−1},
node i is a leaf of the subgraph Gi ⊂ G where nodes with index up to i − 1 are pruned. Furthermore, let us denote
by ei the unique edge that connects node i ∈ {1, ..., n − 1} to the set of nodes {i + 1, ..., n}, and orient it such that
sei = i. The reversed edge is denoted ei+m = ēi. All directed edges are then indexed. This can be done iteratively
and we provide an implementation of this renumbering in Ref. [46].

For convenience, we recall and slightly rephrase Eq. (10a)

ϕ = ωj −
∑
e :
se=j

he(∆e) , j ∈ {1, ..., n}, ϕ ∈ R , (41a)

|∆e| ≤ γe , e ∈ E . (41b)

A solution ∆ of Eq. (10a) is also a solution of Eqs. (41). Showing that there is at most one solution to Eqs. (41) then
implies that there is at most one solution to Eq. (10a).

Assume that ∆ and ∆′ are two solutions of Eqs. (10a), with respective synchronous frequencies ϕ and ϕ′. Without
loss of generality, assume that ϕ ≤ ϕ′. We compare now the components of the two solutions recursively.

Initial step, i = 1. According to our choice of indexing, Eq. (41a) gives

he1(∆e1) = ω1 − ϕ ≥ ω1 − ϕ′ = he1(∆′e1) , (42)

and by monotonicity of the coupling functions,

∆e1 ≥ ∆′e1 . (43)

Recursion step, 2 ≤ i ≤ n− 1. By the previous steps, we have ∆ej ≥ ∆′ej for j ∈ {1, ..., i − 1}. According to our
choice of indexing, there is a single out-going edge from node i whose angle differences in the two solutions have not
been compared, namely ei (see Fig. 6). Again by Eq. (41a) and monotonicity of the coupling functions, we get

hei(∆ei) = ωi −
∑

e:se<i,
te=i

hē(−∆e)− ϕ ≥ ωi −
∑

e:se<i,
te=i

hē(−∆′e)− ϕ′ = hei(∆
′
ei) , (44)

and

∆ei ≥ ∆′ei . (45)

Final step, i = n. All the previous steps together with Eq. (41a) and monotonicity of the coupling functions give

ϕ = ωn −
∑
e:

te=n

hē(−∆e) ≥ ωn −
∑
e:

te=n

hē(−∆′e) = ϕ′ ≥ ϕ , (46)

which implies ϕ = ϕ′. The inequalities in Eqs. (42), (43), (44), (45), and (46) are equalities and the two solutions are
identical. Note that we crucially used that the coupling functions are strictly increasing.

FIG. 6. Illustration of the node and edge indexing. In this example, our construction implies j1, j2 < i ≤ m.
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Proof of Theorem 3.

For technical purposes, we need to define the extended flow function hγ : Rm → R2m, for each edge e,

[hγ(y)]e =

 h′e(−γe)(ye + γe) + he(−γe) , ye < −γe ,
he(ye) , |ye| ≤ γe ,
h′e(γe)(ye − γe) + he(γe) , ye > γe ,

(47)

[hγ(y)]e+m =

 −h
′
ē(γe)(ye + γe) + hē(γe) , ye < −γe ,

hē(−ye) , |ye| ≤ γe ,
−h′ē(−γe)(ye − γe) + hē(−γe) , ye > γe ,

(48)

which is well-defined and continuously differentiable.
Let ξ, η ∈ Rm, such that CΣξ = CΣη = u ∈ Zc, and define y = ξ − η ∈ Ker(CΣ). We construct the two diagonal

m×m matrices Λ1(ξ, η), Λ2(ξ, η) as

(Λ1)e = (ξe − ηe)−1

∫ ξe

ηe

(hγ)′e(t)dt , (49)

(Λ2)e = (ξe − ηe)−1

∫ ξe

ηe

(hγ)′ē(−t)dt . (50)

We verify that

hγ(ξ)− hγ(η) =

(
Λ1

−Λ2

)
(ξ − η) = Λ · (ξ − η) , (51)

and the two matrices Λ1,Λ2 are nonnegative, because the coupling functions are assumed strictly increasing.
Then, by definition of Sε,

‖Sε(ξ)− Sε(η)‖22 = y>
(
Im − εB>L†BoΛ

)> (
Im − εB>L†BoΛ

)
y = ‖y‖22 − εy>My +O(ε2) , (52)

where

M = B>L†BoΛ + Λ>B>o (L†)>B . (53)

The remainder of the proof will be to show that, under the assumptions of the theorem, y>My > 0. Then for ε > 0
small enough, the second order term in Eq. (52) is dominated by the first order term, which is negative. Therefore,
Eq. (52) is strictly smaller than ‖y‖22, and Sε is contracting.

We remark that BoΛ has exactly the same sparsity and sign pattern as B, with the difference being that the nonzero
terms are not all the same, not even for the terms corresponding to the ends of a given edge. Namely,

(BoΛ)ie =

 (Λ1)ee , if e = (i, j) for some j ,
−(Λ2)ee , if e = (j, i) for some j ,
0 , otherwise.

(54)

We illustrate this property for a simple network in the box at page 16.
We now define

Λp =
Λ1 + Λ2

2
, Λm =

Λ1 − Λ2

2
, (55)

and recall that the out-incidence matrix is given by Bo = ([B]+, [B]−) [Eq. (28)], where the square brackets denote
the positive and negative parts (see the Methods Section for details). Then we can rewrite

BoΛ = [B]+Λ1 − [B]−Λ2 = [B]+(Λp + Λm)− [B]−(Λp − Λm) = BΛp + |B|Λm , (56)

with the absolute value taken elementwise.
Based on Eqs. (53) and (56), on the fact that y = B>L†By (see Prop. 6), and using z = L†By, we compute

y>My = z>
(
BoΛB> +BΛB>o

)
z = z>

(
2BΛpB

> + |B|ΛmB
> +BΛm|B|>

)
z = 2z> (Lp +Dm) z , (57)
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Example. We illustrate Eq. (54) for the case of a triangular network:

Bo =

1 0 0 0 0 1
0 1 0 1 0 0
0 0 1 0 1 0

 , Λ =


λ1,1 0 0

0 λ1,2 0
0 0 λ1,3

−λ2,1 0 0
0 −λ2,2 0
0 0 −λ2,3

 BoΛ =

 λ1,1 0 −λ2,3

−λ2,1 λ1,2 0
0 −λ2,2 λ1,3

 ,

and defining λp,i = (λ1,i + λ2,i)/2 and λm,i = (λ1,i − λ2,i)/2, we ca write

BoΛ =

 λp,1 0 −λp,3

−λp,1 λp,2 0
0 −λp,2 λp,3

 +

λm,1 0 λm,3

λm,1 λm,2 0
0 λm,2 λm,3

 = BΛp + |B|Λm .

where

Lp = BΛpB
> (58)

Dm =
(
|B|ΛmB

> +BΛm|B|>
)
/2 . (59)

First, notice that Lp is a weighted Laplacian matrix with the graph structure of G. The weight of edge e is given
by

(Λp)ee = (ξe − ηe)−1

∫ ξe

ηe

h′od,e(t)dt , (60)

which, by the Mean Value Theorem, is bounded by

inf
x
h′od,e(x) ≤ (Λp)e ≤ sup

x
h′od,e(x) , (61)

with the infimum and supremum taken over the admissible values of x. Therefore, by definition of the odd weighted
Laplacian matrix [Eq. (14)], we can bound the second eigenvalue of Lp,

λ2(Lp) ≥ inf
x
λ2 (Lo(x)) . (62)

Finally, using that z = L†By is orthogonal to the null space of Lp,

z>Lpz ≥ λ2(Lp)‖z‖22 ≥ inf
x
λ2(Lo(x))‖z‖22 . (63)

Second, let us break down the matrix Dm. Using the positive and negative parts of the incidence matrix, B =
[B]+ − [B]− and |B| = [B]+ = [B]−, direct computation shows

Dm = [B]+Λm[B]>+ − [B]−Λm[B]>− . (64)

According to Prop. 5, we know that Dm is diagonal, and its elements can be computed as

(Dm)ii =
∑
e

([B]+)
2
ie (Λm)ee −

∑
e

([B]−)
2
ie (Λm)ee =

∑
e

([B]+ − [B]−)ie (Λm)ee =
∑
e∈Ei

±(Λm)ee , (65)
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where Ei is the set of edges incident to node i in G. Note that the elements of Λm are given by

(Λm)e = (ξe − ηe)−1

∫ ξe

ηe

h′ev,e(t)dt , (66)

and, by the Mean Value Theorem, are bounded by

|(Λm)e| ≤ sup
x
|h′ev,e(x)| . (67)

Therefore, by definition of the even weighted degree matrix [Eq. (15)], we can bound the elements of Dm,

min
i

(Dm)ii ≥ − sup
x,i

(De(x))ii , (68)

which gives the bound

z>Dmz ≥ min
i

(Dm)ii ‖z‖
2
2 ≥ − sup

x,i
(De(x))ii ‖z‖

2
2 . (69)

To conclude, we introduce Eqs. (63) and (69) into Eq. (57), yielding

y>My ≥
[
inf
x
λ2 (Lo(x))− sup

x,i
(De(x))

]
‖z‖22 , (70)

which is strictly positive under the assumptions of the theorem. Going back to Eq. (52), we have shown that the first
order term is strictly negative, and therefore, for ε > 0 sufficiently small, the flow mismatch iteration Sε is contracting,
which concludes the proof.

Proposition 6. Let G be a graph and define its incidence matrix B, Laplacian matrix L, and the cycle-edge incidence
matrix CΣ (see the Methods Section for definitions). Then

Ker(CΣ) = Ker(Im −B>L†B) . (71)

Proof. Let x ∈ Ker(Im −B>L†B), then x = B>L†Bx. We compute

CΣx = CΣB
>L†Bx = 0 , (72)

because CΣB
> = 0. Thus Ker(Im −B>L†B) ⊂ Ker(CΣ).

The rows of CΣ are linearly independent by definition. Then its kernel has dimension m − (m − n + 1) = n − 1.
The matrix Im −B>L†B is the orthogonal projection onto the kernel of B, therefore its rank is the nullity of B. By
the Rank-Nullity Theorem,

null(Im −B>L†B) = m− null(B) = n− 1 . (73)

The two kernel have the same dimension.
The set Ker(Im−B>L†B) is then a subspace of Ker(CΣ) and has the same dimension, they are then identical.

Bounds on the algebraic connectivity.

The following bounds are adapted from standard results of algebraic graph theory. We summarize the bounds of
interest and the ad hoc quantities in Table II.

Proposition 7. With the definition of Lo given in Eq. (14), we have the following bounds on its Fiedler eigenvalue:

(i) λ2 ≥ 2ce[1− cos(π/n)] [47, 4.3];

(ii) λ2 ≥ (nDi,min)−1 (adapted from [63, Lemma 1.9]);

(iii) λ2 ≥ 4 mine σmin,e/nD (adapted from [64, Theorem 4.2]).

All relevant quantities are defined in Tab. II.
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Proof. (i). Defining the weighted edge connectivity [47]

c(x) = min
S

∑
e

h′od,e(xe) , (74)

where the minimum is taken over subsets of edges S ⊂ E that split the graph G, we can adapt the proof of [47, 4.3],
yielding

λ2(Lo) ≥ 2c(x) [1− cos(π/n)] ≥ 2ce [1− cos(π/n)] , (75)

independently of x, where ce is defined in Tab. II.
(ii). We adapt here the proof of [63, Lem. 1.9]. Let v be the eigenvector of Lo associated with λ2 and assume that

|vi| = maxk |vk| (recall that all these quantities depend on x). Because Lo is a symmetric Laplacian matrix, 1>v = 0
and there is an index j such that vivj < 0. We denote with Pij the shortest (weighted) path from i to j. Now,

λ2 =
v>Lov

v>v
=

∑
e=(k,`) h

′
od,e(xe)(vk − v`)2∑

k v
2
k

≥
∑

e=(k,`)∈Pij

h′od,e(xe)(vk − v`)
nv2

i

. (76)

Defining the odd weighted diameter

Dw(x) = max
i,j

min
Pij

∑
e∈Pij

[h′od,e(xe)]
−1 , (77)

where the maximum is taken over all pairs of vertices and the minimum is taken over all simple paths joining i and
j, we can apply the Sedrakyan inequality [65, Ch. 8] (direct consequence of the Cauchy-Schwarz inequality) to the
numerator and get

λ2 ≥
[Dw(x)]−1(vi − vj)2

nv2
i

≥ 1

nDw(x)
≥ 1

ndw
, (78)

where dw is defined in Tab. II.
(iii). Alternatively, both sides of the identity

v>Lov = λ2v
>v , (79)

can be bounded as follows,

v>Lov =
∑

e=(i,j)∈E

h′od,e(xe)(vi − vj)2 ≥ min
e
σmin,e , (80)

and

2nv>v =
∑
i

∑
j

(vi − vj)2 ≤
∑
i

∑
j

|Pij |
∑

(k,`)∈Pij

(vk − v`)2 ≤
∑

(k,`)∈E

(vk − v`)2dG
∑
i

∑
j

χij(k, `)

≤
∑

(k,`)∈E

(vk − v`)2dGn
2/2 ,

(81)

where we used that v>1 = 0 and the Cauchy-Schwartz inequality at the first line, Pij is a chosen (unweighted) shortest
path between i and j, χij(e) is its indicator function, and we used [64, Lemma 4.1] at the last inequality. Plugging
these bounds together yields

2nmin
e
σmin,e ≤ λ2dGn

2/2 , (82)

which concludes the proof.
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Bounds Reference

max
i

(De)ii ≤ max
i

∑
e∈Ei

αmax,e Direct computation (Ei is the set of edges incident to node i).

λ2 ≥ 2ce[1− cos(π/n)] Prop. 7, adapted from [47, 4.3].

λ2 ≥ (ndw)−1 Prop. 7, adapted from [63, Lemma 1.9].
λ2 ≥ 4 min

e
σmin,e/ndG Prop. 7, adapted from [64, Theorem 4.2].

Definitions Name

αmax,e = sup
x
|h′ev,e(x)| Maximal even slope.

σmin,e = inf
x
h′od,e(x) Minimal odd slope.

ce = min
E⊂S

∑
e∈E

σmin,e Minimized odd weighted edge connectivity (S is the set of splitting edge sets).

dw = max
i,j

min
Pij

∑
e∈Pij

σ−1
min,e Maximized odd weighted diameter (Pij denotes a path between i and j).

dG = max
i,j

min
Pij

|Pij | Graph diameter (Pij denotes a path between i and j).

TABLE II. List of bounds on the components of Eq. (18) and definition of the ad hoc quantities. Note that all quantities are
independent of the state of the system and can be determined beforehand.
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