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The community of scientists is characterized by their need to publish in peer-reviewed journals,
in an attempt to avoid the ”perish” side of the famous maxim. Accordingly, almost all researchers
authored some scientific articles. Scholarly publications represent at least two benefits for the study
of the scientific community as a social group. First, they attest of some form of relation between
scientists (collaborations, mentoring, heritage,...), useful to determine and analyze social subgroups.
Second, most of them are recorded in large data bases, easily accessible and including a lot of
pertinent information, easing the quantitative and qualitative study of the scientific community.
Understanding the underlying dynamics driving the creation of knowledge in general, and of sci-
entific publication in particular, in addition to its interest from the social science point of view,
can contribute to maintaining a high level of research, by identifying good and bad practices in
science. In this manuscript, we attempt to advance this understanding by a statistical analysis of
publications within peer-reviewed journals. Namely, we show that the distribution of the number of
articles published by an author in a given journal is heavy-tailed, but has lighter tail than a power
law. Moreover, we observe some anomalies in the data that pinpoint underlying dynamics of the
scholarly publication process.

INTRODUCTION

One of the core mechanism in the practice of science is
the self examination of a field of research. The validation
of a scientific result is always collective, in the sense that
it has been scrutinized, criticized, and (hopefully) vali-
dated by a sufficient number of peers. Furthermore, any
scientific result is always subject to new evaluation and
might eventually be replaced by a more accurate work.
At the level of a community, scientists are then used to
criticize the work of colleagues and to have their work
criticized by them. It is then not surprizing that some
scientists started to study (and thus somehow criticize)
the scientific community itself [1]. The study of the the
scientific community, sometimes refered to as Science of
Science [2, 3], is a key step to unravel the underlying be-
haviors of its members and draw some lessons about it.
In the last decades, such an investigation has been signif-
icantly eased by the emergence of large data bases of sci-
entific publications (Web of Sience, PubMed, arXiv,...).
It allowed for instance to build the time-evolving collab-
oration network of scientists [4].

Such an approach and associated tools has the poten-
tial to help maintaining the quality of research, and thus
a good use of public funding. Indeed, in the current con-
text of increasing number of scientific publications [5, 6]
in parallel to the ubiquitous presence of predatory jour-
nals [7, 8], distinguishing bad practices from honest work
in scientific publishing becomes more and more challeng-
ing. Understanding the underlying dynamics of scientific
publication will be instrumental in this task.

A scientist’s work is commonly evaluated by two dif-
ferent, but related, quantities, namely, their number of
publications and the number of citations thereof. These
quantities are summarized in the criticized, but widely

spread, h-index [9, 10]. Naturally, a vast majority of
investigations about the scientific publication process is
focussed on the citation side. It mostly aims at describ-
ing how the citation network impacts the number of ci-
tations a given paper is (and therefore its authors are)
likely to recieve. In particular, evidence suggests that
citations follow a rich-get-richer or preferential attach-
ment process, where the more citations a scientist has,
the more likely they are to get new citations [11], lead-
ing to a power law distribution of citations [12, 13] or
other heavy-tailed distributions [14]. Indeed, preferen-
tial attachement has been proven to lead to heavy-tailed
distributions [15], with some refinements to account for
the life-time of a publication [16].

Compared to the number of citations that an article
or a scientist gets, the number of articles published by
a scientist has been much less investigated, even though
publishing papers is a sine qua none to get cited. In this
manuscript, we focus on the distribution of articles pub-
lished by a scientist within a given peer-reviewed journal.
As interestingly pointed out by Sekara et al. [17], publish-
ing in a peer-reviewed journal (especially in high-impact
ones) is more likely if one author of the manuscript al-
ready published in the same journal. Such a process can
be viewed as some sort of preferential attachment, and
an expected outcome of such an observation is a high
representation of a few authors in a given journal [15].
Furthermore, a scientist whose field of research is well-
aligned with a journal topic is likely to publish a large
proportion of their work in this journal, leading again to
a high representation of a few specialized authors in a
given journal.

We support these expectations, showing that in a se-
lection of fourteen journals (listed in Table I) the distri-
bution of the number of articles published by an author
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within a journal has a heavy tail. It appears however
that this distribution have a tail weaker than a power
law. We argue that this distribution can be explained by
a preferential attachement process, which is backed up by
evidence. On top of that, in some of the selected jour-
nals, we observe some interesting anomalies for which we
give an explanation.

RESULTS

For each journal in Table I, we consider the list of all
authors who published in it and the number of articles
published by each of them up to 2017. From this, one can
plot the empirical distribution of the number of articles
published by an author in a given journal (Fig. 1). On
these data, we fit three heavy-tailed distributions, namely
a power law (Eq. 2), a power law with cutoff (Eq. 3),
and a Yule-Simon distribution (Eq. 4), using a Maximum
Likelihood Estimator (see Methods). We then assess the
goodness-of-fit of our fitting following [18], which is en-
coded in a p-value (see Methods). The results of each
fit and goodness-of-fit tests are presented in Table II,
and the resulting distributions together with the data
are shown in Figs. 1, 3, and 5. Clearly, the power law
distribution is a poor fit for all data, its p-value being
zero for all journals. This can be seen in Figs. 1, 3, and
5, where for most of the journals, the tail of the data set
is lighter than the tail of its power law fit (black dashed
lines). For three journals (namely SCI, PLC, CHA), the
p-value of the power law with cutoff is larger than 5%
and it seems to be a rather good fit, and for two others
(NEM and SIA), the Yule-Simon distribution cannot be
excluded.

General explanation

We propose the following explanation for this heavy-
tailedness. Many social processes are ruled by the so
called preferential attachment [19]. Scientific collabora-
tions [20] and citations [12] are apparently no exception
to the rule. Namely, the probability that an author will
create a new scientific collaboration at time t is propor-
tional to the number of scientific collaboration they have.
It is reasonable to assume that the evolution of the num-
ber of articles published by an author in a given journal
is described by a similar preferential attachment process.
In other words, it would mean that the probability that
a new article published in a given journal is signed by an
author is proportional to the number of articles published
by this author in the very same journal.

Heuristically, our argument is that if an author pub-
lished a lot of article in a journal, it means (i) that they
write a lot of papers, and (ii) that their research topic is
well-aligned with the topics covered by the journal (for
specialized journals), or that the scientific impact of this
author’s research matches the standards of the journal

(for interdisciplinary journals). Assumptions (i) and (ii)
together imply that this author is likely to publish again
in this journal.

This intuition can be made more rigorous. For three
journals (SCI, LAN, and PRL), we refined the data to
account for the time evolution of the number of articles
published by each author. It turns out that, on average,
the number of articles published during a year, by an
author having already published k articles, is close to
be proportional to k (details are found in the Methods
section). According to [15], if it was exactly proportional
k, the final distribution would be a power law. The fact
that the relation is not exactly proportional, but close
to be, probably explains the lighter-than-power-law tails
observed in Figs. 1, 3, and 5.

Observations

Aside of these general considerations, we note three
interesting observations in the data. First, for journals
with a large number of authors and published articles, the
tail of the histogram drops dramatically. Second, some
authors apprear to be stronger than the power law. And
third, some very large groups of authors can be identified
even in long term aggregated data.
Decay in long-life journals. We observe in Figs. 1,

3, and 5 that for old journals where a lot of articles are
published, the tail of the histogram has a rather fast de-
cay after a heavy-tailed regime (this is particularly strik-
ing in PRL and PRD, Fig. 3). We explain this by the fact
that the number of pulications of a given author depends
on two parameters, namely their publication rate and the
length of their career. Both these quantities are bounded
in practice and even if it is possible to publish a very large
number of articles in a given journal, there is a practi-
cal limit to this number. We hypothesize that the decay
in the histograms of long-living journals comes from the
finiteness of publication rates and career lengths.
Key players. The general distribution of the number

papers per author is quite clear in our analysis, it seems
to be somewhere between an exponential distribution and
a power law. The power law having the heaviest tail
of the four distributions considered (exponential, power
law, power law with cutoff, and Yule-Simon), we use it
to estimate an upper bound on the number of articles
published by an author for each journal, shown as the
vertical dashed lines in Figs. 1, 3, and 5 (more details in
the Methods section). In some journals (see e.g., PNA,
CHA, SIA, and AMA in Fig. 1, and NEM and ACS in
the Appendix, Fig. 5), it appears that, some authors,
which we refer to as key players, publish significantly
more articles in a journal than what the power law would
predict.

Note that we checked that these key players are not
artifacts due to multiple authors having the same name
which would count as the same person. In all cases pre-
sented here, there is a unique person appearing in the
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Label Journal name (red. year) # authors (red.)

NAT Nature∗ (1950) 63’791 (3’374)

PNA Proc. Natl. Acad. Sci. USA∗∗ (1950) 55’849 (2’495)

SCI Science∗ (1940) 48’928 (4’788)

LAN The Lancet∗ (1910) 33’416 (3’015)

NEM New England Journal of Medicine∗ (1950) 27’078 (3’842)

PLC Plant Cell (2000) 20’649 (4’712)

ACS J. of the American Chemical Society∗ (1930) 82’223 (5’301)

TAC IEEE Trans. on Automatic Control (2000) 8’911 (3’603)

ENE Energy (2005) 28’920 (4’491)

CHA Chaos 7’409

SIA SIAM Journal on Applied Mathematics 6’106

AMA Annals of Mathematics 3’679

PRD Physical Review D 64’922

PRL Physical Review Letters∗ 90’993

Table I. Labels, names, and number of authors in the journals considered. In parenthesis is given the reduction year (when
applicable) and the number of authors up to this year. One (resp. two) asterisc(s) indicate the journals where authors with
one (resp. two) publication(s) are discarded (see the Methods section for details).

Figure 1. Histograms of the proportion of authors aJ with respect to the number of articles published, for the six journals,
indicated in the insets. The grey dotted line is an exponential fit of the data, emphasizing that the distribution is heavy-tailed.
We also show the best fit (MLE)f for a power law distribution (dashed black), power law with cutoff (dash-dotted black), and
Yule-Simon distribution (dotted black). The vertical dashed line indicates the theoretical maximal number of publications if
the distribution was the fitted power law (see Eq. 8). The same plots for the other journals are available in Fig. 3 and in the
Appendix, Fig. 5.

authors’ list of a very large number of papers.

In order to make the data more comparable, we restrict
our investigation to the early years between 1900 (earli-
est possible in WoS) and the year in parenthesis in the
second column of Table I for our first nine journals in the
table. This yields a number of authors comparable to the

following three journals in the table (reduced number of
authors is given in parenthesis in the third column of Ta-
ble I). The resulting distributions are depicted in Fig. 2
and in the Appendix, Fig. 6, and the fitted parameters
are detailed in Table III. It appears from Figs. 2 and 6
that for such reduced number of authors, the overshoot
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PL PLwC Y-S

α p [%] β γ p [%] ρ p [%]

NAT 2.58 0.0 2.11 0.07 0.0 3.10 0.0

PNA 2.53 0.0 2.30 0.02 0.0 2.83 0.0

SCI 2.68 0.0 2.30 0.06 16.64 3.28 0.02

LAN 2.47 0.0 2.09 0.05 0.18 2.90 0.0

NEM 2.76 0.0 2.36 0.07 0.2 3.43 8.82

PLC 2.30 0.0 1.92 0.10 13.42 3.01 0.92

ACS 2.11 0.0 1.95 0.01 0.0 2.32 0.0

TAC 2.08 0.0 1.84 0.04 0.0 2.51 0.02

ENE 2.36 0.0 2.12 0.06 0.12 3.15 0.0

CHA 2.47 0.0 2.28 0.05 80.84 3.43 0.0

SIA 2.49 0.0 2.20 0.08 2.24 3.49 9.06

AMA 2.26 0.0 1.72 0.14 0.18 2.95 0.0

PRD 1.49 0.0 1.24 0.005 0.02 1.55 0.0

PRL 1.73 0.0 1.52 0.005 0.12 1.80 0.0

Table II. Fitted parameters and p-value of the goodness-of-
fit for power law (PL), power law with cutoff (PLwC), and
Yule-Simon (Y-S) distributions. No set of data is well-fitted
by a power law distribution. However, the power law with
cutoff seems to be a good fit for three journals (SCI, PLC,
CHA), and the Yule-Simon distribution seems to correctly fit
the distribution of NEM and SIA. For the other journals, none
of the distributions seem to fit the data appropriately.

of some authors is more systematic, suggesting that in
the early years of scientific journals, there is usually a
few very prolific authors publishing in it at a rather high
rate.

Considering the resluts of the fitting, in Table III, we
observe better agreements than for the full data sets.
This probably indicates that the sample size is not large
enough to accurately fit heavy-tailed distributions, which
obviously need large samples. The fact that NAT and
PNA are well-fitted by two distributions, also indicates
that the reduced data sets are not large enough to be
conclusive.

Peaks in PRL and PRD. In Fig. 3, we observe two
peaks in the empirical distributions of PRL (around 66
and 96) and PRD (around 77 and 104). Crossing the lists
of authors for each number of articles between 63 and 102
for PRL (resp. 72 and 111 for PRD), we get the right
panel of Fig. 3. The fact that the authors composing
a peak in PRL are also the ones composing one of the
peaks in PRD suggests that these authors are all part of
a large group publishing together.

A quick search, indicates that the peaks correspond
to the research groups of the experiments ATLAS and
CMS at the CERN. These two experiments are so big
and gather so many authors that they can be seen, even
in the data used in our analysis, aggregated throughout
the whole history of PRL (since 1958) and PRD (since
1970).

PL PLwC Y-S

α p [%] β γ p [%] ρ p [%]

NAT 2.32 29.4 2.23 0.016 6.0 2.98 0.0

PNA 2.10 0.1 1.96 0.02 15.0 2.55 6.3

SCI 2.44 0.0 2.13 0.09 72.0 3.37 4.7

LAN 2.25 0.0 1.81 0.11 30.2 2.91 2.5

NEM 2.27 0.9 2.06 0.04 4.4 2.91 0.0

PLC 2.59 0.0 2.12 0.16 0.3 3.82 54.7

ACS 2.06 0.0 1.89 0.02 0.1 2.46 64.0

TAC 2.32 0.0 2.06 0.06 23.7 3.04 0.1

ENE 2.69 0.8 2.50 0.06 94.5 4.06 0.0

Table III. Fitted parameters and p-value of the goodness-of-fit
for power law (PL) and power law with cutoff (PLwC), and
Yule-Simon (Y-S) distributions. We see that the only data
that are well-approximated by the power law are for NAT
when reduced to the first 3374 entries of WoS. The power law
with cutoff, however, seems to be a good fit for the reduced
data of six journals (NAT, PNA, SCI, LAN, TAC, and ENE).
ENE is particularly well-fitted by the power law with cutoff.
Finally, the Yule-Simon distribution seems to correctly fit the
distribution of PAN, PLC, and ACS. For the other journals,
none of the distributions seem to fit the data appropriately.
Remark that the reduced data of NAT and PNA are correctly
fitted for two distributions indicating that the amount of data
is probably not sufficient for a good fit.

DISCUSSION

Our analysis reveals a series of interesting, even though
not surprizing, dynamics ruling the process of publica-
tion within scientific journals. The main observation is
the heavy-tailed shape of the distribution of publications,
which we explain by a preferential attachment process.
We showed that the preferential attachment dynamics is
heuristically meaningful, in the sense that if an author
publishes a lot of papers and if their profile aligns with
the journal’s profile, they are likely to publish in this
journal and at the same time they are likely to have al-
ready published in the same journal. Moreover, we also
backed up the preferential attachment process by data-
based evidence, where we show that the proportion of ar-
ticles published in a journal by the authors with already
k articles (in this journal) is approximately proportional
to k. An exact proportionality would lead, according to
Ref. [15], to a power law distribtion. Of course, in the
long run, scientists cannot published an unbounded num-
ber of articles, due to finiteness of their careers. This
translates, in our analysis, as a drop in the tail of the
distribution for older journals, which then do not follow
a power law. Apparently, a power law with cutoff or a
Yule-Simon distribution are better suited to describe the
data.

On top of this general dynamics, our analysis displays
some interesting anomalies that point towards specific
underlying dynamics. First, the data show that in the
early decades of existence of a journal, a small number
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Figure 2. Histograms of the number of authors aJ with respect to the number of articles published, for the first three journals
of Table I, with data restricted to the years between 1900 (earliest possible in WoS) and the years indicated in the insets. The
number of authors covered is given in parenthesis in the third column of Table I. We show the best fit for a power law distribution
(dashed black), power law with cutoff (dash-dotted black), and Yule-Simon distribution (dotted black). The vertical dashed
line indicates the theoretical maximal number of published papers if the distribution was the fitted power law (see Eq. 8). We
observe an almost systematic exceeding of the number of articles published by some authors. The same plot for other journals
is available in the Appendix, Fig. 6.

ATLAS

CMS

Figure 3. Analysis of PRL and PRD. Left and center: Same figures as in Fig. 1 for PRD and PRL respectively. The
arrows indicate the increased number of authors corresponding to the ATLAS and CMS experiments at the CERN. Right:
Two-dimensional, color-coded histogram of the number of authors with respect to the number of articles published in PRL
(horizontal axis) and PRD (vertical axis). The peak centered at (96,77) is the CMS experiment and the one at (66,104) is the
ATLAS experiment, both at the CERN.

of authors are extremely influencial. This translates as
some authors having much more publications than what
a power law distribution would predict, given that the
power law already has an heavier tail than our data. Such
authors, which we refer to as key players, are likely to be
some very influencial scientists in the topic(s) covered by
the journal.

Second, we realized that some huge scientific project
can impact the distribution of publications even on large
scale aggregated data. In our samples, this is seen for the
journals Physical Review Letters (PRL) and Physical Re-
view D (PRD), which publish the outcomes of the large
experiments ATLAS and CMS at the CERN, gathering
thousands of scientists. Our approach was then able to
pinpoint further dynamics taking place in nowadays sci-
ence.

As seen in Table II, the fitting of the data by a power
law with cutoff or a Yule-Simon distribution is not per-
fect. More advanced fitting techniques might be able to
identify a common distribution for all journals, provided
that one exists. From a social science point of view, a

more refined explanation of the approximate preferential
attachment taking place in scientific publishing could un-
ravel with more certainty the source of the distributions
observed in this manuscript. This is work for a future
research.

MATERIALS AND METHODS

Data sets

We consider an arbitrary selection of 14 peer-reviewed
journals (see Table I), whose data are available on the
Web of Science data base (WoS). The selected journals
vary in age (from a few decades to more than a century)
but are not too young, in order to have sufficiently many
publications available, and all of them are still publish-
ing nowadays. We denote by J := {NAT,PNA, ...,PRL}
the set of journals considered (see Table I for the list of
labels).
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Within each journal J ∈ J, we index authors by an
integer and for each author i = 1, ..., NJ , we count the
number nJi of articles published by i in J up to year 2017,
which gives the set of data AJ = {nJi }. We restrict our
investigation to publications labelled as “Article” in the
WoS data base, to focus on peer-reviewed articles and to
discard editorial material for instance. For some journals,
the number of authors was too large to be downloaded
from the WoS data base. As a consequence, the authors
having published only one or two articles in these journals
had to be removed from the data (e.g., NAT, PNA, or
SCI, indicated by asteriscs in Table I). Note also that we
do not take into account articles published anonymously,
which represent a large number of articles in medicine
journals in particular.

From the data set AJ we can compute the proportion
of authors who published n ∈ N articles

aJ(n) :=
|{i : nJi = n}|

NJ
. (1)

These values are represented in logarithmic scales in
Figs. 1, 3, and 5, each panel corresponding to a differ-
ent journal.

Distribution fitting

For each empirical distribution in Figs. 1, 3, and 5, we
fit an exponential distribution (grey dotted lines) to em-
phasize their heavy-tailed behavior. With this observa-
tion, it is tempting to fit a power law distribution (black
dashed lines),

Ppl(aJ = n) = C1 · n−α , (2)

with α > 1 and C1 ∈ R normalizing the distribution.
However, as pointed out in [18], fitting a heavy-tailed
distribution is not trivial and should be done carefully,
the risk being to derive spurious conclusions [21]. Fol-
lowing recommendations in Ref. [18], we also try to fit
other heavy-tailed distributions, such as the power law
with cutoff (black dash-dotted lines),

Pplc(aJ = n) = C2 · n−βe−γn , (3)

with β > 1, γ > 0, and normalizing constant C2 ∈ R,
and the Yule-Simon distribution (black dotted lines),

Pys(aJ = n) = C3 · (ρ− 1)B(n, ρ) , (4)

with ρ > 0, C3 ∈ R is the normalizing constant, and
where B(x, y) is the Euler beta function. We perform
the distribution fitting by optimizing the parameters α,
β, γ, and ρ with a Maximum Likelihood Estimator [18].
Other distribtions (such as log-normal, Lévy, Weibull)
were tested and discarded because they were far from
matching the data.

Goodness-of-fit

To evaluate the goodness of our fitting, we again follow
the recommendations of [18]. We generate 5000 sets of

synthetic data Ãi, i = 1, ..., 5000, with the same num-
ber of elements |Ãi| = NJ and following the distribution
whose goodness-of-fit is to be tested. For each of these
data sets, we define its associated empirical cumulative
distribution function (CDF)

Si(k) :=
|{x ∈ Ãi : x ≤ k}|

|Ãi|
, (5)

and denote by SJ the empirical CDF of AJ . We denote
by Pi the CDF of the best fitted distribution associated
to Ãi (PJ for AJ). The p-value of the goodness-of-fit is
then given by

p :=
|{i : dKS(Si, Pi) > dKS(SJ , PJ)}|

5000
, (6)

where the Kolmogorov-Smirnov distance between two
CDFs Q1 and Q2 is defined as the maximum difference
between them, i.e.,

dKS(Q1, Q2) := max
k
|Q1(k)−Q2(k)| . (7)

Namely, p is the proportion of synthetic data sets
that are further from the theoretical distribtion (in the
Kolmogorov-Smirnov sense) than the data set investi-
gated. The fit is rejected if p < 5%, and considered
as good otherwise [see [18] for more details].

Maximum number of articles

Based on Eq. 2, one can compute xn, the number of
authors with n publications in J if the distribution fol-
lowed a power law. Setting this number to xn = 1, the
maximal number of articles is given by

xn ≈ NJC1n
−α =⇒ nmax ≈ (NJC1)

1
α . (8)

This determines a theoretical upper bound on the num-
ber of articles published by an author for each journal,
shown as the vertical dashed lines in Figs. 1, 3, and 5.

Number of articles published every year

For three journals (SCI, LAN, and PRL) we compare
the number of authors having published k articles at the
begining of year t with the number of articles published
by these authors during year t. We define:

• Nk(t): the number of authors who have published
k articles on December 31st of year t− 1;

• mk(t): the number of articles published during year
t by all the authors with k articles on December
31st of year t− 1.
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In Fig. 4, we plot the values of mk(t)/Nk(t) with re-
spect to k for years t ∈ {1999, ..., 2008} for SCI, LAN,
and PRL. Note that, for each year considered, we do not
take into account authors who did not publish, because
the majority of those are not active anymore (retired or
dead). For each of the three journals, these values have a
linear correlation coefficient larger than 0.7, supporting
a fairly good linear dependence,

mk(t) ∼ k ·Nk(t) . (9)

The probability that a new paper is signed by an au-
thor with k publications is then close to be proportional
to k. According to [15], if it was exactly proportional,
after a long enough time, the distribution of Nk would
follow a power law. The fact that the relation 9 is not
exact and that our samples are limited to a finite time
horizon, explains that we do not obtain exactly a power
law. However, the good correlation between mk(t)/Nk(t)
and k tells us that the distribution should not be too far
away from a power law, in agreement with our observa-
tion of Table II.

DATA AVAILABILITY

The data are available from WoS. The study used no
special computer code.
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APPENDIX

We show here the figures not displayed in the Results
section.
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D. Helbing, S. Milojević, A. M. Petersen, F. Radic-
chi, R. Sinatra, B. Uzzi, A. Vespignani, L. Waltman,
D. Wang, and A.-L. Barabási, Science 359, eaao0185
(2018).

[4] M. E. J. Newman, Proc. Natl. Acad. Sci. USA 98, 404
(2001).

[5] D. J. de Solla Price, Science 149, 510 (1965).
[6] L. Bornmann and R. Mutz, J. Assoc. Inf. Sci. Tech. 66,

2215 (2015).
[7] J. Bohannon, Science 342, 60 (2013).
[8] P. Sorokowski, E. Kulczycki, A. Sorokowska, and

K. Pisanski, Nature 543, 481 (2017).
[9] J. E. Hirsch, Proc. Natl. Acad. Sci. USA 102, 16569

(2005).
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Figure 4. Average number of publication within year t for authors with k publication at the begining of year t, with respect
to k, for years t ∈ {1999, ..., 2008} and for the three journals SCI, LAN, and PRL. The Pearson correlation coefficients are
respectively rSCI ≈ 0.714, rLAN ≈ 0.707, and rPRL ≈ 0.763, all larger than 0.7, suggesting a relation close to linear. For SCI
(resp. LAN and PRL), 14 points (resp. 12 points and 2 points) are left out of the frame, for sake of readability.

Figure 5. Histograms of the proportion of authors aJ with respect to the number of articles published, for the six journals
indicated in the insets. The grey dotted line is exponential fit of the data, emphasizing that the distribution is heavy-tailed.
We show the best fit for a power law distribution (dashed black), power law with cutoff (dash-dotted black), and Yule-Simon
distribution (dotted black). The vertical dashed line indicates the theoretical maximal number of published papers if the
distribution was the fitted power law.
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Figure 6. Histograms of the number of authors aJ with respect to the number of articles published, for the six journals indicated
in the insets, with data restricted to the years between 1900 (earliest possible in WoS) and the years indicated. The number
of authors covered is given in parenthesis in the third column of Table 1 in the Main Text. We show the best fit for a power
law distribution (dashed black), power law with cutoff (dash-dotted black), and Yule-Simon distribution (dotted black). The
vertical dashed line indicates the theoretical maximal number of published papers if the distribution was the fitted power law.
We observe an almost systematic exceeding of the number of articles published by some authors.
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