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Abstract. Many real-world systems of coupled agents exhibit directed interactions, meaning that the influence
of an agent on another is not reciprocal. Furthermore, interactions usually do not have an identical
amplitude and/or sign. To describe synchronization phenomena in such systems, we use a generalized
Kuramoto model with oriented, weighted, and signed interactions. Taking a bottom-up approach, we
investigate the simplest possible oriented networks, namely, acyclic oriented networks and oriented
cycles. These two types of networks are fundamental building blocks from which many general
oriented networks can be constructed. For acyclic, weighted, and signed networks, we are able
to completely characterize synchronization properties through necessary and sufficient conditions,
which we show are optimal. Additionally, we prove that if it exists, a stable synchronous state is
unique. In oriented, weighted, and signed cycles with identical natural frequencies, we show that the
system globally synchronizes and that the number of stable synchronous states is finite.
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1. Introduction. Since its introduction in 1975 [1], the Kuramoto model has become a
standard mathematical model to describe the large variety of synchronization phenomena
encountered in natural and man-made systems. References [2, 3, 4] give some extensive
surveys about it. In its initial formulation, the Kuramoto model describes the time evolution
of a group of n oscillators, each characterized by a natural frequency \omega i \in \BbbR , with identical
and symmetric coupling K/n > 0,

\.\theta i = \omega i  - 
K

n

n\sum 
j=1

sin(\theta i  - \theta j) , i \in \{ 1, . . . , n\} .(1.1)

It has been shown [5, 6] that under the assumption that the distribution of natural frequencies
has compact support, there exists a critical coupling strength, Kc > 0, such that the oscillators
frequency-synchronize, meaning that for all i, j \in \{ 1, . . . , n\} ,

lim
t\rightarrow \infty 

\.\theta i = lim
t\rightarrow \infty 

\.\theta j(1.2)

if K > Kc.
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The Kuramoto model achieves a good compromise between the simplicity of expression, al-
lowing for an analytical approach, and the complexity of synchronization behaviors described.
During the last decades, interest in the Kuramoto model increased in many fields of science
and engineering. It has been shown that it can be used to describe synchronization phenom-
ena in domains as various as biology [7, 8, 9], physics [10, 11], and engineering [12]. To better
represent real-world systems, the Kuramoto model has been generalized in many different
ways [12, 13, 14]. One of the main generalizations is to consider the Kuramoto model with
interactions given by an arbitrary graph,

\.\theta i = \omega i  - 
n\sum 
j=1

aij sin(\theta i  - \theta j) , i \in \{ 1, . . . , n\} ,(1.3)

where aij is the (i, j)th element of the weighted adjacency matrix of the considered graph.
In the vast majority of the literature on the Kuramoto model, the interactions are con-

sidered symmetric and positive, i.e., aij = aji > 0. However, in some systems exhibiting
synchronizing behaviors, the interaction can be nonsymmetric (aij \not = aji) or even unidirec-
tional (aij \not = 0 =\Rightarrow aji = 0) [15, 16, 17, 18]. Some systems also exhibit negative couplings,
observed in particular in social networks, when some agents adjust their ideas in opposition to
some others, and in interactions between neurons that can be excitatory (aij > 0) or inhibitory
(aij < 0) [16, 17, 19, 20]. In this manuscript, we focus on the Kuramoto model with inter-
actions in a unique direction, which we refer to as oriented interactions, to be distinguished
from directed interactions, which can go in both directions between two vertices. We consider
general coupling weights, which can be positive or negative, referred to as signed interactions.

Investigations about the Kuramoto model with mixed positive and negative couplings
showed that with all-to-all coupling, synchronization depends on the ratio between the number
of positive and negative couplings [21, 22].

In [15], the authors give some estimation of the critical coupling Kc in the limit of large
(n \gg 0) oriented networks, as well as networks with mixed positive and negative couplings.
Some conditions for the existence of a frequency-synchronous state in general directed networks
are given in [23], and [24] gives some conditions for the existence of frequency-synchronous
states in complete directed, weighted, and signed networks. The authors of [25] show that
in directed networks, synchronization is favored if the natural frequencies and the weighted
out-degrees (called in-degrees in their article) of the oscillators are correlated.

In this manuscript, we are interested in determining conditions for global synchronization
of the Kuramoto model with oriented interactions. All previously cited references consider
either all-to-all coupling or general interaction graphs, without restriction on the type of
graphs considered. We choose here a bottom-up approach, starting with the simplest oriented
networks possible, i.e., oriented acyclic networks and oriented cycles. For weighted and signed
oriented acyclic networks, we give some explicit necessary and sufficient conditions for almost
global synchronization of the system. For weighted and signed oriented cycles, with identical
natural frequencies, we prove global synchronization and show that the final synchronization
frequency can take only discrete values.

The Kuramoto model on acyclic oriented graphs has been investigated in [26], where the
authors give some local subdomains of the state space where initial conditions are guaranteed
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460 R. DELABAYS, P. JACQUOD, AND F. D\"ORFLER

to lead to synchronization. In section 2, we almost completely characterize the synchroniza-
tion properties of the Kuramoto model on weighted and signed oriented acyclic graphs. We
give some necessary and sufficient conditions on the system's parameters (edge weights and
natural frequencies) for the existence of a globally exponentially stable synchronous state.
Furthermore, this synchronous state is unique. We show through examples that our necessary
and sufficient conditions cannot be sharpened in general. It is remarkable that our results
hold regardless of the signs of the couplings in the network.

On oriented cycles, Rogge and Aeyels [27] obtained an upper bound on the number of
stable synchronous states of the Kuramoto model with cyclic oriented interactions, for gen-
eral natural frequency distribution. To the best of our knowledge, the best estimate of the
region of synchronization for identical natural frequencies is given in [28], where the authors
explicitly determine a subdomain of the state space where the system always synchronizes.
They further identify subdomains of the basins of attraction of the various synchronous states.
In section 3, we show that, in the case of identical natural frequencies, the system globally
synchronizes, again regardless of the sign and magnitude of the couplings. We further prove
that each stable synchronous state corresponds to a different synchronous frequency, and the
the number of such synchronous frequencies is finite. We express them as solutions of an
equation. Furthermore, we observe numerically that the winding number of a synchronous
state is correlated to the winding number of the initial conditions. The distribution of final
winding numbers given the initial winding number is Gaussian. Surprisingly, the variance of
this distribution is identical for all initial winding numbers.

In section 4, we illustrate the difficulty to generalize our results to more complex interaction
graphs. Using oriented acyclic networks and oriented cycles as building blocks, we construct
more general oriented graphs where we attempt to extend the results of the previous sections.
We show that in some cases our results can be directly generalized, but we also identify
some cases where the system synchronizes or not depending on the initial conditions of the
oscillators. The Kuramoto dynamics turn out to be rather complex in general oriented and
signed networks.

1.1. Definitions and properties. We consider a generalized Kuramoto model with ori-
ented weighted and real-valued (not necessarily positive) interactions

\.\theta i = \omega i  - 
n\sum 
j=1

aij sin(\theta i  - \theta j) , i \in \{ 1, . . . , n\} ,(1.4)

where \theta i \in \BbbS 1 \simeq \BbbR /(2\pi \BbbZ ) and \omega i \in \BbbR are the ith oscillator's angle and natural frequency,
respectively, aij \in \BbbR is the coupling constant between oscillators i and j, and n is the number
of oscillators. The coupling is a priori not symmetric, we allow negative edge weights, and
aij = 0 means that there is no edge from i to j. The interaction graph is then directed, signed,
and weighted. The oscillators' angles are aggregated in the state \bfittheta \in \BbbT n. For any c \in \BbbR and
\bfitk \in \BbbZ n, the states \bfittheta and \bfittheta +2\pi \cdot \bfitk + c \cdot (1, . . . , 1) are equivalent with respect to the dynamics
of (1.4). We then consider any state up to a constant shift of all angles and up to addition of
integer multiples of 2\pi .

A weighted, signed, and directed graph \scrG = (\scrV , \scrE , A) is defined by a set of vertices \scrV :=
\{ 1, . . . , n\} , a set of edges \scrE \subset \scrV \times \scrV which are ordered pairs of vertices, and a weighted
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adjacency matrix A, where aij \not = 0 if and only if the edge (i, j) from vertex i to vertex j belongs
to \scrE . In this manuscript, we consider finite (n < \infty ) oriented graphs (aij \not = 0 =\Rightarrow aji = 0)
without self-loops (aii = 0). In an oriented graph, if there exists an edge from vertex i to
vertex j (aij \not = 0), we call i the parent of j, and j is the child of i. Vertices without children
are called leaders, and the set of leaders is \scrL \subset \scrV . A path from vertex i to vertex j is a
sequence of edges \scrP ij := (\ell 1, . . . , \ell L), where i is the parent of edge \ell 1, j is the child of edge \ell L,
and for all p = 1, . . . , L, \ell p is an edge of \scrG and the parent of \ell p+1 is the child of \ell p. A path
is simple if it does not go twice through an edge. A cycle is a simple path from a vertex to
itself. If a graph does not contain any cycle, it is acyclic.

Remark 1.1. We stress our arbitrary convention of calling parent (resp., child) the source
(resp., target) of an edge. In our definition, an oscillator is ``watching"" its children, i.e., its
dynamics are directly influenced by them. On the contrary, the dynamics of an oscillator is
not (directly) influenced by the state of its parents.

1.2. Local order parameter. For the standard Kuramoto model, with undirected inter-
actions given by (1.1), the order parameter,

rei\psi :=
1

n

n\sum 
j=k

ei\theta k ,(1.5)

gives a measure of alignment of the oscillators. In particular, the dynamics of each oscillator
can be written with respect to the order parameter only [4]. Following the same idea, we
define the local order parameter of vertex j (a similar definition was given in [15]),

rje
i\psi j :=

\sum 
k \not =j

ajke
i\theta k ,(1.6)

which is equivalently rewritten in real and imaginary parts as

rj cos(\psi j) =
\sum 
k

ajk cos(\theta k) , rj sin(\psi j) =
\sum 
k

ajk sin(\theta k)(1.7)

with \psi j \in \BbbS 1 and rj \in \BbbR \geq 0. The dynamics (1.4) of each oscillator can then be rewritten

\.\theta i = \omega i  - ri sin(\theta i  - \psi i) , i \in \{ 1, . . . , n\} ,(1.8)

where we recall that ri and \psi i depend on other angles, and are therefore time-dependent. We
define the weighted out-degree of vertex j,

d\mathrm{o}\mathrm{u}\mathrm{t}j :=

n\sum 
k=1

| ajk| ,(1.9)

and indexing the children of j from 1 to nj such that

| aj1| \geq | aj2| \geq \cdot \cdot \cdot \geq | ajnj | ,(1.10)

we define the residual outgoing weight

\rho j := max

\Biggl\{ 
0, | aj1|  - 

nj\sum 
k=2

| ajk| 

\Biggr\} 
.(1.11)
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462 R. DELABAYS, P. JACQUOD, AND F. D\"ORFLER

Figure 1.1. The possible complex values of the local order parameter for a vertex with three children are
in the pink area. The two extreme cases of smallest/largest order parameter amplitude are depicted. When all
angles are aligned, the amplitude of the order parameter is d\mathrm{o}\mathrm{u}\mathrm{t}j and when all angles are \pi apart from \theta 1, the
order parameter has amplitude \rho j.

Proposition 1.2. For any oriented, weighted, and signed graph, the amplitude of the local
order parameter rj belongs to the interval [\rho j , d

\mathrm{o}\mathrm{u}\mathrm{t}
j ]. Furthermore, we can construct angle

distributions realizing both end values of this interval.

Proof. The upper bound is a direct application of the triangle inequality,

rj =

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k

ajke
i\theta k

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \sum 
k

| ajkei\theta k | =
\sum 
k

| ajk| = d\mathrm{o}\mathrm{u}\mathrm{t}j .(1.12)

The amplitude of the local order parameter rj is by definition larger than or equal to zero,
and the triangle inequality gives also

rj =

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k

ajke
i\theta k

\bigm| \bigm| \bigm| \bigm| \bigm| \geq \bigm| \bigm| \bigm| aj1ei\theta 1\bigm| \bigm| \bigm|  - 
\bigm| \bigm| \bigm| \bigm| \bigm| 
nj\sum 
k=2

ajke
i\theta k

\bigm| \bigm| \bigm| \bigm| \bigm| \geq | aj1|  - 
nj\sum 
k=2

| ajk| .(1.13)

By definition, \rho j is then a lower bound for rj . This proves the first part of the proposition.
We prove the second part for nonnegative weights. The argument can be easily adjusted in

case some weights are negative. The value rj = \rho j is realized when the angles \theta k, k = 2, . . . , nj
are all equal and \pi apart from \theta 1: \theta 2 = \cdot \cdot \cdot = \theta nj = \theta 1\pm \pi . When all these angles are identical,
\theta 1 = \cdot \cdot \cdot = \theta nj , and then rj = d\mathrm{o}\mathrm{u}\mathrm{t}j . Thus both ends of the interval can be reached for some
angle distributions; both cases are illustrated in Figure 1.1.

Remark 1.3. In the particular case where j has a single outgoing edge, the residual out-
going weight and the weighted out-degree coincide, \rho j = d\mathrm{o}\mathrm{u}\mathrm{t}j = rj . When j has two children,
\rho j = | aj1|  - | aj2| , which is zero if and only if the weights have the same absolute value. In
general, if j has three or more children, \rho j will be zero if weights are not too different.
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1.3. Synchronization. If not specified otherwise, synchronization refers to frequency-
synchronization, which means \.\theta i = \.\theta j for all i, j. At a synchronous state of the oriented
Kuramoto model, all angles rotate at the same frequency and angle differences are constant
in time. It is necessary for synchronization that all leaders have the same natural frequency
and that the deviation from leader frequency is bounded by the weighted out-degree, at each
oscillator.

Proposition 1.4. Let \scrG be an oriented, weighted, and signed graph, with at least one leader.
If the dynamical system (1.4) with interaction graph \scrG has a synchronous state, then

(i) the leaders have identical natural frequency \omega i = \omega \mathrm{L} for all i \in \scrL ; and
(ii) for all i \in \{ 1, . . . , n\} ,

| \omega i  - \omega \mathrm{L}| \leq d\mathrm{o}\mathrm{u}\mathrm{t}i .(1.14)

Proof. (i) By definition, at a synchronous state, all oscillators, and leaders in particular,
have the same frequency \.\theta i = \omega \mathrm{L}, i \in \{ 1, . . . , n\} . By definition again, the dynamics of leaders,
given by (1.4), reduce to

\.\theta i = \omega i , i \in \scrL .(1.15)

Therefore the leaders must have the same natural frequency, \omega i = \omega \mathrm{L}, i \in \scrL .
(ii) If | \omega i - \omega \mathrm{L}| > d\mathrm{o}\mathrm{u}\mathrm{t}i , according to Proposition 1.2, the right-hand side of (1.8) is strictly

larger than \omega \mathrm{L} in absolute value and the system is then not synchronous. This concludes the
proof by contraposition.

Without loss of generality, we can consider all angles in a frame rotating at a given
frequency. Throughout this manuscript, if a network contains leaders and they have identical
natural frequency \omega \mathrm{L}, we apply the change of variable

\theta i(t) \rightarrow \theta i(t) - \omega \mathrm{L}t .(1.16)

After this, leaders have zero natural frequency and a synchronous state at the leader frequency
is an equilibrium of (1.4), meaning that all frequencies are zero. We will see that other
synchronous states can occur in cyclic interaction graphs.

If for all initial conditions, the system (1.4) converges to a synchronous state, we say that
it globally synchronizes. We say that a synchronous state is almost globally stable if almost all
initial conditions converge to it. If furthermore convergence is exponential, the synchronous
state is almost globally exponentially stable.

2. Oriented acyclic networks. An acyclic oriented graph contains at least one leader.
Proposition 1.4 gives then necessary conditions for the existence of a synchronous state of (1.4),
and in particular for global synchronization, on such a network. We give now a sufficient
condition for almost global synchronization in such networks, and prove that there is a unique
stable synchronous state. Finally, we show that the necessary and sufficient conditions we
obtain cannot be improved without further assumptions on the graphs considered.
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2.1. Equilibria. Let \bfittheta \ast \in \BbbT n be an equilibrium of (1.4), and then it solves

0 = \omega i  - 
n\sum 
j=1

aij sin(\theta 
\ast 
i  - \theta \ast j ) = \omega i  - r\ast i sin(\theta 

\ast 
i  - \psi \ast 

i ) , i \in \{ 1, . . . , n\} ,(2.1)

where r\ast i , \psi 
\ast 
i are the components of the local order parameter with angles values of \bfittheta \ast . Such

solutions exist if and only if \omega i \leq r\ast i for all i. If r\ast i > 0, there are then two possible values for
\theta \ast i (which coincide if \omega i = r\ast i ):

\theta \ast i \in \{ arcsin(\omega i/r\ast i ) + \psi \ast 
i , \pi  - arcsin(\omega i/r

\ast 
i ) + \psi \ast 

i \} .(2.2)

Throughout this manuscript, we take the arcsine to be one-to-one from [ - 1, 1] to [ - \pi /2, \pi /2],
and thus at least one equilibrium satisfies | \theta \ast i  - \psi \ast 

i | \leq \pi /2.
We assess the local stability of \bfittheta \ast by linearizing the time evolution of a small perturbation

of the angles. In the dynamical system (1.4) on an acyclic oriented graph, fixed points depend
on the initial conditions of the leaders. Perturbing the leaders then changes the fixed point,
and the analysis is not relevant for the fixed point initially considered. To avoid this, we
retrict our stability analysis to the dynamics where the leaders are fixed,

\.\theta i = \omega i  - 
n\sum 
j=1

aij sin(\theta i  - \theta j) , i \in \scrV \setminus \scrL ,(2.3)

with \theta i = \theta \ast i for i \in \scrL .

Lemma 2.1. Let \bfittheta \ast \in \BbbT n be an equilibrium of (1.4), where the interaction graph is oriented,
acyclic, weighted, and signed. The following statements hold:

(i) If for all i \in \scrV \setminus \scrL , we have r\ast i > 0 and | \omega i| < r\ast i , then \bfittheta \ast is locally exponentially stable
if and only if \theta \ast i = arcsin(\omega i/r

\ast 
i ) + \psi \ast 

i for all i \in \scrV \setminus \scrL . Furthermore, \bfittheta \ast is the only stable
equilibrium with initial conditions of the leaders given by \theta i(0) = \theta \ast i for i \in \scrL .

(ii) If for at least one i \in \scrV \setminus \scrL we have r\ast i > 0, | \omega i| < r\ast i , and \theta 
\ast 
i = \pi  - arcsin(\omega i/r

\ast 
i )+\psi 

\ast 
i ,

then \bfittheta \ast is unstable and its stable manifold of \bfittheta \ast has zero measure.

Proof. (i) In acyclic oriented networks, the Jacobian matrix \scrJ of the system (1.4) is lower
triangular (up to renumbering the vertices). Its eigenvalues are its diagonal elements

\scrJ ii =  - 
\sum 
j

aij cos(\theta 
\ast 
i  - \theta \ast j ) =  - r\ast i cos(\theta \ast i  - \psi \ast 

i ) .(2.4)

All eigenvalues are then negative if and only if \theta \ast i = arcsin(\omega i/r
\ast 
i ) + \psi \ast 

i for all i \in \scrV \setminus \scrL . The
equilibrium then satisfies | \theta \ast i  - \psi \ast 

i | \leq \pi /2 for i \in \scrV \setminus \scrL .
Moreover, as the initial conditions of the leaders are fixed, we can construct recursively

the angles of the other oscillators. This uniquely defines the stable equilibrium.
(ii) If for some i \in \scrV \setminus \scrL , we have \theta \ast i = \pi  - arcsin(\omega i/r

\ast 
i ) + \psi \ast 

i , then \scrJ ii > 0. The fixed
point \bfittheta \ast has at least one unstable direction, and its stable manifold is a submanifold of \BbbT n of
dimension at most n - 1. It has then zero measure [29, Proposition 4.1].
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2.2. Sufficient condition. We showed in Proposition 1.4 that d\mathrm{o}\mathrm{u}\mathrm{t}i > | \omega i| is a necessary
condition for synchronization. This condition depends only on parameters of the system and
is independent of its current state. In Lemma 2.1, we showed that it is sufficient that each
nonleader oscillator satisfies r\ast i > | \omega \ast 

i | to guarantee the existence of a stable equilibrium. As
the local order parameter depends on initial conditions, this condition is state-dependent. A
condition that would guarantee synchronization for any initial conditions \bfittheta \circ \in \BbbT n would be

| \omega i| < min
\bfittheta \circ 

r\ast i ,(2.5)

but this last quantity is hard to compute in general. However, according to Proposition 1.2, we
know that r\ast i \geq \rho i regardless of initial conditions. As \rho i can be computed directly by (1.11),
we give now a state-independent sufficient condition for almost global stability of the unique
stable equilibrium. Our argument relies on a series of results from [30], which we summarize
in Appendix A for completeness.

Theorem 2.2. Let us consider the dynamical system (1.4), where the interaction graph is
oriented, acyclic, weighted, and signed, and assume that for i \in \{ 1, . . . , n\} ,

| \omega i| < \rho i if \rho i > 0 or \omega i = 0 if \rho i = 0 .(2.6)

Then the system synchronizes exponentially from almost all initial conditions.

Remark 2.3. The condition in (2.6) is always satisfied for the leaders where \omega i = \rho i = 0.

Proof. We write the initial conditions of the system (at time t = 0) as \bfittheta \circ \in \BbbT n and the
equilibrium toward which it converges, if it exists, as \bfittheta \ast \in \BbbT n. If necessary, we renumber
the oscillators, such that the adjacency matrix is lower triangular. By recurrence on the
oscillators' indices, we prove that all oscillators converge exponentially to a steady state, i.e.,
for all i \in \{ 1, . . . , n\} , \.\theta i \rightarrow 0 and \theta i \rightarrow \theta \ast i as t \rightarrow \infty , both exponentially. Note that all
variable quantities in this proof depend on initial conditions, but we do not explicitly write
this dependence for the sake of readability.

Base case, i = 1. By definition, i = 1 is a leader. According to (1.4), \.\theta 1 \equiv 0, and it
trivially exponentially converges to a steady state,

lim
t\rightarrow \infty 

\theta 1 = \theta \ast 1 = \theta \circ 1 .(2.7)

Induction step. Assume that for all j \in \{ 1, . . . , i - 1\} , limt\rightarrow \infty \.\theta j = 0 and limt\rightarrow \infty \theta j = \theta \ast j ,
and convergences are exponential. Let us prove that i converges exponentially to a steady
state as well, limt\rightarrow \infty \.\theta i = 0 and limt\rightarrow \infty \theta i = \theta \ast i . As the adjacency matrix is lower triangular,
we can restrict our discussion to the subgraph with vertices \{ 1, . . . , i\} .

If i is a leader, the step is done by applying the base case. Assume then that i is not a
leader. By assumption, all children j of i converge exponentially, as by renumbering we have
j < i. Using the local order parameter, we can write (1.4) as the nonautonomous system

\.\theta i = \omega i  - ri(t) sin [\theta i  - \psi i(t)] =: f(t, \theta i) ,(2.8)

where we write ri and \psi i as time-dependent variables because for a given initial state of the
system \bfittheta \circ , from the point of view of the ith oscillator, these values depend only on time.
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Children are not influenced by parents, due to the acyclic topology of the graph. The solution
\theta i can be seen as a nonautonomous semiflow (Definition A.1) for (2.8). As all children of i
converge to a fixed angle, there exists r\ast i \in [\rho i, d

\mathrm{o}\mathrm{u}\mathrm{t}
i ] and \psi \ast 

i \in \BbbS 1 such that

lim
t\rightarrow \infty 

ri(t) = r\ast i , lim
t\rightarrow \infty 

\psi i(t) = \psi \ast 
i .(2.9)

By definition of the local order parameter, exponential convergence of the children j of i
implies that ri(t) and \psi i(t) in (2.9) converge exponentially. We also define the autonomous
system

\.\varphi i = \omega i  - r\ast i sin [\varphi i  - \psi \ast 
i ] =: g(\varphi i)(2.10)

with initial conditions \bfitvarphi (0) = \bfittheta \circ . The solution \varphi i of (2.10) is an autonomous semiflow
(Definition A.1). Observe that (2.10) equals the time-varying dynamics (2.8) only if \psi i(t)
and ri(t) have converged to their steady-state values. We show now that the dynamical
systems (2.8) and (2.10) with the same initial conditions always converge to the same set of
fixed points.

The \omega -limit set of \theta i, subject to initial conditions \bfittheta \circ \in \BbbT n, is defined as

\Lambda i(\bfittheta 
\circ ) :=

\biggl\{ 
\theta \in \BbbS 1 : \exists \{ tj\} , j \in \BbbN , s.t. lim

j\rightarrow \infty 
tj = \infty and lim

j\rightarrow \infty 
\theta i(tj) = \theta 

\biggr\} 
,(2.11)

which is the set toward which \theta i converges under the dynamics of (2.8), as t\rightarrow \infty .
The functions f(t, \cdot ) and g(\cdot ) are bounded, continuous, and 2\pi -periodic on \BbbR . They are

then naturally defined on the compact quotient space \BbbS 1, which we parametrize by angles in
( - \pi , \pi ]. Furthermore, as t\rightarrow \infty , f converges to g, and it is a standard result of analysis [31,
Theorem 7.13] that convergence of a function defined on a compact set is uniform.1 In
particular f(t, \cdot ) \rightarrow g(\cdot ) uniformly on any compact subset of \BbbS 1, as t \rightarrow \infty . Proposition A.4
then implies that \theta i is asymptotically autonomous with limit semiflow \varphi i (Definition A.1).
Theorem A.5 implies first that \theta i converges to \Lambda i, second that \Lambda i is invariant for \varphi i (see
Definition A.2), and third that \Lambda i is chain recurrent for \varphi i (see Definition A.3). In the
following, we construct the largest invariant and chain recurrent set for the dynamics of
(2.10), thereby identifying \Lambda i.

By Proposition 1.2, r\ast i \geq 0 and we consider separately the cases r\ast i > 0 and r\ast i = 0. If
r\ast i > 0, the largest invariant and chain recurrent set of the dynamics (2.10) is composed of
two points,

\scrI i := \{ arcsin(\omega i/r\ast i ) + \psi \ast 
i , \pi  - arcsin(\omega i/r

\ast 
i ) + \psi \ast 

i \} ,(2.12)

which are well-defined and distinct as we assumed 0 \leq | \omega i| < r\ast i . This identifies \Lambda i as the set
of equilibria of (2.10). According to Lemma 2.1, almost all initial conditions converge to an
equilibrium where \theta \ast i = arcsin(\omega i/r

\ast 
i ) + \psi \ast 

i . Furthermore, applying point (i) of Lemma 2.1 to
the subnetwork composed of the vertices \{ 1, . . . , i\} , the equilibrium is locally exponentially
stable, implying exponential convergence of \theta i to \theta 

\ast 
i .

1Here uniform means that for all \varepsilon > 0, \exists T > 0 such that | f(t, \theta )  - g(\theta )| < \varepsilon for all t \geq T and for all
\theta \in \BbbS 1.
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If r\ast i = 0, then by assumption, \omega i = 0. The right-hand side of (2.10) is then zero for
all time, and the right-hand side of (2.8) vanishes as t \rightarrow \infty . The largest invariant chain
recurrent set of the dynamics (2.10) is the whole circle, that is, \Lambda i = \BbbS 1. According to the
discussion below (2.9), convergence of ri(t) to zero is exponential, i.e., there exists T > 0 such
that for all t > T ,

0 \leq ri(t) \leq ce - \mu t(2.13)

with c, \mu > 0, which implies

| \.\theta i| \leq ce - \mu t .(2.14)

We verify that \theta i converges,

lim
t\rightarrow \infty 

| \theta i| \leq lim
t\rightarrow \infty 

\biggl[ 
| \theta i(T )| + c

\int t

T
e - \mu sds

\biggr] 
= | \theta i(T )| + c\mu  - 1e - \mu T <\infty .(2.15)

The limit then exists and we denote it by \theta \ast i . Let us show that \theta i \rightarrow \theta \ast i exponentially. For all
t > T ,

| \theta i(t) - \theta \ast i | \leq 
\int \infty 

t
| \.\theta i(s)| ds \leq c\mu  - 1e - \mu t .(2.16)

Convergence is then exponential.
We have shown that convergence is locally exponential for all equilibria \bfittheta \ast satisfying either

r\ast i > 0, | \theta \ast i  - \psi \ast 
i | < \pi /2, or r\ast i = 0 for i \in \{ 1, . . . , n\} . According to Lemma 2.1, the basins of

attraction of all other equilibria have zero measure. Almost all initial conditions then converge
to such an equilibrium, and the rate of convergence is exponential since the linearized system
converges exponentially [32, Theorem 4.15].

If an oscillator i has a single child j, then \rho i = d\mathrm{o}\mathrm{u}\mathrm{t}i = | aij | and, by Theorem 2.2 and
Proposition 1.4, (2.6) for vertex i is a necessary and sufficient condition for almost global
exponential synchronization.

Corollary 2.4. If all vertices have at most one outgoing edge, then the system synchro-
nizes almost globally, exponentially fast, if and only if the natural frequencies of all nonleader
oscillators i satisfy | \omega i| < | aij | , where j is i's unique child.

The case of identical natural frequencies (\omega i \equiv 0) is a particular case of Theorem 2.2.

Corollary 2.5. Consider the dynamical system (1.4) with identical natural frequencies (\omega i \equiv 
0) where the interaction graph is oriented, acyclic, weighted, and signed. Then the system
synchronizes almost globally, exponentially fast.

2.3. Tightness of the conditions. We now give examples of three simple acyclic graphs to
illustrate how tight our necessary and sufficient conditions (1.14) and (2.6) are. The amplitude
of the local order parameter r\ast i depends only on the initial conditions of the leaders \bfittheta \circ , and
we know that

min
\bfittheta \circ 

r\ast i \geq \rho i .(2.17)
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Figure 2.1. Left: Example of an acyclic network where, depending on initial conditions, r\ast 1 can take any
value in the interval [\rho i, d

\mathrm{o}\mathrm{u}\mathrm{t}
i ]. Network parameters are \omega 1 = \omega 2 = \omega 3 = 0 and (a12, a13) = (1, 2). This

gives \rho 1 = 1 and d\mathrm{o}\mathrm{u}\mathrm{t}1 = 3. Center: Example of an acyclic network where there exists \delta > 0 such that
\rho 1 + \delta < r\ast 1 < d\mathrm{o}\mathrm{u}\mathrm{t}1  - \delta for any initial conditions. Network parameters are (\omega 1, \omega 2, \omega 3, \omega 4) = (0,

\surd 
3, - 2, 0) and

(a12, a13, a24, a34) = (1,
\surd 
3, 2, 4). This gives \rho 1 =

\surd 
3 - 1 and d\mathrm{o}\mathrm{u}\mathrm{t}1 =

\surd 
3+1, while r\ast 1 \in \{ 1, 2\} . Right: Example

of an oriented graph where all edges going out of vertex i belong to independent subgraphs, separated by the
orange dashed lines. In this case, for any r \in [\rho i, d

\mathrm{o}\mathrm{u}\mathrm{t}
i ], there exists initial conditions such that r\ast i = r.

Depending on the graph topology, the inequality (2.17) can be tight or not. In the network
considered in Example 2.6, there is equality in (2.17), whereas in Example 2.7 it is a strict
inequality.

Example 2.6. Consider the weighted network in the left panel of Figure 2.1. (Parameters
are given in the caption.) In this case, \rho 1 = 1 and d\mathrm{o}\mathrm{u}\mathrm{t}1 = 3. Consider initial conditions such
that \theta \circ 2  - \theta \circ 3 = \phi . For \phi = 0, we obtained r\ast 1 = d\mathrm{o}\mathrm{u}\mathrm{t}1 = 3 and for \phi = \pi we have r\ast 1 = \rho 1. Both
bounds (2.6) and (1.14) are reached for some initial condition and while \phi is ranging from 0
to \pi , all values of the interval [\rho 1, d

\mathrm{o}\mathrm{u}\mathrm{t}
1 ] are obtained.

This example satisfies the hypotheses of Corollaries 2.4 and 2.5. Both bounds are tight
and valid depending on initial conditions, i.e., our bounds are as good as they get. For some
networks, the sufficient condition of Theorem 2.2 is as well necessary for global synchroniza-
tion. It also means that for these networks, (1.14) is a sufficient condition for the existence of
an equilibrium.

Example 2.7. Consider the weighted network in the center panel of Figure 2.1. (Parame-
ters are given in the caption.) Here \rho 1 =

\surd 
3 - 1 and d\mathrm{o}\mathrm{u}\mathrm{t}1 =

\surd 
3+1. According to Theorem 2.2,

the system almost globally exponentially synchronizes for | \omega 1| < \rho 1. We can compute that
for all initial conditions, either r\ast 1 = 1 or r\ast 1 = 2. Then, the system also globally synchronizes
for \rho 1 < | \omega 1| < 1.

In this example, the bounds are not sharp: synchronization is almost global for some
natural frequencies violating (2.6) and impossible for some natural frequencies violating (1.14).
The system globally synchronizes for \rho 1 < | \omega 1| \leq min\bfittheta \circ r\ast 1.

Generally, if each edge going out of i is connected to a separate subgraph, as in the right
panel of Figure 2.1, then for any r \in [\rho i, d

\mathrm{o}\mathrm{u}\mathrm{t}
i ], there exist system states such that r\ast i = r.

Otherwise, if two edges going out of i are connected to subgraphs sharing an edge, the range
of the local order parameter r\ast i is strictly smaller than the interval [\rho i, d

\mathrm{o}\mathrm{u}\mathrm{t}
i ].
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Figure 2.2. Left: Illustration of the network used in Example 2.8. Center: Time evolution of the angle
errors \delta \theta i according to dynamics (1.4) with natural frequencies given by (2.18), with \omega 0 = 1.9. Here \omega i < r\ast i
for i \in \scrV \setminus \scrL and we see exponential convergence. (The y-axis is in log-scale.) Right: Same curves as in the
center panel (dashed lines) together with the time evolution of the angle errors \delta \theta i according to dynamics (1.4)
with natural frequencies given by (2.18), with \omega 0 = 2 (plain lines). Here \omega i = r\ast i for i \in \scrV \setminus \scrL and we see that
convergence is slower than exponential convergence. (Both axes are in log-scale.)

Example 2.8. Consider the network on the left panel of Figure 2.2, where all couplings are
identical. We simulate (1.4) on this network, with natural frequencies \bfitomega given by

\omega i =

\biggl\{ 
\omega 0 if 1 \leq i \leq 7 ,
0 if 8 \leq i \leq 15 ,

(2.18)

and initial conditions satisfying \theta i(0) = 0 for i \in \{ 8, . . . , 15\} = \scrL . The center panel of
Figure 2.2 shows the time evolution of the angle error \delta \theta i = | \theta i - \theta \ast i | for i \in \scrV \setminus \scrL , when \omega 0 =
1.9 < r\ast i . Convergence is exponential (the y-axis is in log-scale) as predicted by Theorem 2.2.
The right panel of Figure 2.2 shows the same curves (dashed line) together with the time
evolution of \delta \theta i when \omega 0 = 2 = r\ast i (plain lines). We clearly see that convergence is slower
than exponential. (Here the axis are both in log-scale.) This shows that condition (2.6) cannot
be relaxed to a nonstrict inequality to guarantee exponential convergence.

Remark 2.9. We stress that all results obtained in this section apply to any magnitude
and sign of the coupling strengths. Our results can hardly be more general.

3. Oriented cycles with identical frequencies. Throughout section 2, we completely char-
acterized synchronization in oriented acyclic networks. We turn now to the simplest cyclic
oriented graph, namely, the oriented cycle. In this case, we are able to prove global synchro-
nization for identical natural frequencies. Again, all the following results hold for any nonzero
coupling constants.

We consider oriented cycles of length n, as in Figure 3.1, with arbitrary edge weights.
By appropriately indexing all vertices, (1.4) is then

\.\theta i = \omega i  - ai,i+1 sin(\theta i  - \theta i+1) , i \in \{ 1, . . . , n\} ,(3.1)

where indices are taken modulo n, and ai,i+1 \in \BbbR \setminus \{ 0\} .
With identical natural frequencies, oriented cycles are very similar to undirected cycles.

At a synchronous state, both cases admit the same angle differences (the center panels of
Figure 3.2). The difference is that in the undirected cycle, the oscillators synchronize to the
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Figure 3.1. Oriented cycle of length n = 10. In section 3, we show global synchronization for these graphs.

Figure 3.2. Time evolution of angles (left), angle differences (center), and frequencies (right) according to
the Kuramoto dynamics (1.4) with undirected (top) and oriented (bottom) cyclic interactions. The cycle is of
length n = 10 with identical natural frequencies and identical couplings. Blue and red lines correspond to two
different initial conditions, leading to two different synchronous states. In the undirected case, angles converge
to a fixed value (top left panel), which is not the case in the oriented case (bottom left). Angle differences
converge to the same value in both undirected and oriented cycles (top and bottom center panels). At the
synchronous state, the frequencies are always zero in the undirected cycle (top right panel) and possibly nonzero
and different in the oriented case (bottom right panel).

mean natural frequency [4, section 3.1], which is zero (top right panel of Figure 3.2). At a
synchronous state, angles are then constant (top left panel of Figure 3.2), i.e., a synchronous
state is an equilibrium. In an oriented cycle, the synchronization frequency, which is the
frequency of all oscillators at a synchronous state and is denoted by \omega \mathrm{s}, depends on the
synchronous state (bottom right panel of Figure 3.2). In this case, oscillators rotate at the
same, nonzero, frequency (bottom left panel of Figure 3.2). The stability of synchronous
states is similar in oriented [27] and undirected [33] cycles.
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We will use the following short-hand notation:

si := sin(\theta i) ci := cos(\theta i) sij := sin(\theta i  - \theta j) cij := cos(\theta i  - \theta j) ,(3.2)

and \Delta ij denotes the angle difference \theta i  - \theta j taken modulo 2\pi in the interval ( - \pi , \pi ].

3.1. Global synchronization. In the case of identical frequencies (\omega i \equiv 0), we are able to
show global synchronization for oriented cycles.

Theorem 3.1. Consider the dynamical system (3.1) with identical natural frequencies. This
dynamical system globally converges to a synchronous state.

Proof. The function

V : \BbbT n  - \rightarrow \BbbR ,

\bfittheta \mapsto  - \rightarrow 2 \cdot 
\sum 
i,j

aij [1 - cos(\theta i  - \theta j)]
(3.3)

is a LaSalle function [34] for the system under consideration. The function V is bounded, and
its time derivative is given by

\.V =  - 2 \cdot 
n\sum 
i=1

\bigl( 
a2i,i+1s

2
i,i+1  - ai - 1,iai,i+1si - 1,1si,i+1

\bigr) 
(3.4)

=  - 
n\sum 
i=1

(ai - 1,isi - 1,i  - ai,i+1si,i+1)
2 =  - 

n\sum 
i=1

\Bigl( 
\.\theta i - 1  - \.\theta i

\Bigr) 2
\leq 0 .(3.5)

The system being defined on a compact manifold \BbbT n, LaSalle's invariance principle [34], implies
that it converges to a synchronous state, because V is lower bounded and decreasing, and its
time derivative vanishes only at synchronous states.

The frequency of the oscillators at a synchronous state is bounded by the smallest coupling,

a\mathrm{m}\mathrm{i}\mathrm{n} := min
i

| ai,i+1| .(3.6)

Proposition 3.2. The synchronization frequency \omega \mathrm{s} belongs to the interval [ - a\mathrm{m}\mathrm{i}\mathrm{n}, a\mathrm{m}\mathrm{i}\mathrm{n}].

Proof. The frequency \omega \mathrm{s} has to satisfy

\omega \mathrm{s} =  - ai,i+1si,i+1(3.7)

for all i \in \{ 1, . . . , n\} , which implies

\omega \mathrm{s} \in 
\bigcap 
i

[ - | ai,i+1| , | ai,i+1| ] = [ - a\mathrm{m}\mathrm{i}\mathrm{n}, a\mathrm{m}\mathrm{i}\mathrm{n}] .(3.8)

Remark 3.3. In general the set of synchronization frequencies can be continuous. We
present here an example inspired by [35, section VI]. Consider an oriented cycle whose length
n is a multiple of 4, with identical positive edge weights. Then the state \bfittheta \alpha \in \BbbT n, defined by

\theta \alpha i :=

\biggl\{ 
 - (i - 1)\pi /2 if i is odd,
 - (i - 2)\pi /2 - \alpha if i is even

(3.9)
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with \alpha \in (0, \pi /2), has angle differences

\Delta \alpha 
i,i+1 =

\biggl\{ 
\alpha if i is odd,
\pi  - \alpha if i is even.

(3.10)

It is then an unstable synchronous state of (3.1), regardless of the value of \alpha . The continuum
of values of \alpha implies a continuum of synchronous states.

Restricting ourselves to stable synchronous states, we show below that their number is
discrete.

3.2. Stability. A full stability analysis of the identical frequency case has been done in
[27] for positive edge weights. We extend it to general nonzero edge weights.

Lemma 3.4. A synchronous state \bfittheta \ast \in \BbbT n of (3.1) with identical natural frequencies is
locally exponentially stable if and only if

ai,i+1 cos(\theta 
\ast 
i  - \theta \ast i+1) > 0 , i \in \{ 1, . . . , n\} .(3.11)

Furthermore, at such a synchronous state with frequency \omega \mathrm{s}, the angle differences are given by

\Delta \omega \mathrm{s}
i,i+1 =

\biggl\{ 
 - arcsin(\omega \mathrm{s}/ai,i+1) if ai,i+1 > 0 ,
\pi + arcsin(\omega \mathrm{s}/ai,i+1) if ai,i+1 < 0 ,

i \in \{ 1, . . . , n\} .(3.12)

Proof. A synchronous state is locally exponentially stable if and only if the Jacobian
matrix

\scrJ (\bfittheta ) =

\left(        
 - a12c12 a12c12

 - a23c23 a23c23
. . .

. . .

. . . an - 1,ncn - 1,n

an,1cn,1  - an,1cn,1

\right)        (3.13)

is Hurwitz. Due to invariance under rotation of all angles, at least one eigenvalue is zero,
but this has no influence on the stability of the synchronous state. According to Gershgorin's
circle theorem [36], the eigenvalues of \scrJ are nonpositive if and only if

ai,i+1 cos(\theta 
\ast 
i  - \theta \ast i+1) \geq 0 , i \in \{ 1, . . . , n\} .(3.14)

If cos(\theta \ast i  - \theta \ast i+1) = 0 for some i \in \{ 1, . . . , n\} , then the first-order term in the Taylor

series of \.\theta i is zero. As the second-order term is nonzero, according to the discussion in [37,
section 1.2], the synchronous state is unstable. We conclude that a synchronous state is locally
asymptotically stable if and only if

ai,i+1 cos(\theta 
\ast 
i  - \theta \ast i+1) > 0 , i \in \{ 1, . . . , n\} .(3.15)

As in this case the Jacobian is Hurwitz, \bfittheta \ast is locally exponentially stable, which proves the
first part of the proposition.
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For a synchronous state to be stable, the cosine of the angle difference ci,i+1 must have
the same sign as its edge weight ai,i+1. We see that

cos[ - arcsin(\omega \mathrm{s}/ai,i+1)] \geq 0 , cos[\pi + arcsin(\omega \mathrm{s}/ai,i+1)] \leq 0 ,(3.16)

where \omega \mathrm{s} is the synchronization frequency, and conclude that the angle differences in a stable
synchronous state are given by (3.12). This concludes the proof.

Remark 3.5. All synchronous states, not only the stable ones, can be parametrized simi-
larly as in (3.12). At a synchronous state, the angle differences satisfy

\Delta \omega \mathrm{s}
i,i+1 \in \{  - arcsin(\omega \mathrm{s}/ai,i+1), \pi + arcsin(\omega \mathrm{s}/ai,i+1)\} .(3.17)

3.3. Stable synchronization frequencies. We now characterize the possible synchroniza-
tion frequencies corresponding to stable synchronous states, which we call stable synchroniza-
tion frequencies. We define n - to be the number of edges with negative weight and

\sigma :=
1

2\pi 

n\sum 
i=1

arcsin (a\mathrm{m}\mathrm{i}\mathrm{n}/| ai,i+1| ) .(3.18)

Proposition 3.6. Consider the dynamical system (3.1) with identical natural frequencies.
The number of possible stable synchronization frequencies is discrete and is given by the number
of integers in the interval (n - /2 - \sigma , n - /2+\sigma ). In particular, for each stable synchronization
frequency \omega \mathrm{s}, there exists an integer q \in (n - /2 - \sigma , n - /2 + \sigma ) \cap \BbbZ such that \omega \mathrm{s} solves

n\sum 
i=1

arcsin (\omega \mathrm{s}/| ai,i+1| ) = (n -  - 2q)\pi .(3.19)

Proof. Let \omega \mathrm{s} \in \BbbR be the frequency at the stable synchronous state \bfittheta \omega \mathrm{s} \in \BbbT n, and let us
define \scrV + (resp., \scrV  - ) as the set of vertices whose outgoing edge has positive (resp., negative)
weight.

Following the stability analysis of section 3.2, the angle differences of the synchronous
state are given by (3.12). Furthermore, the sum of angle differences around the cycle has to
be an integer multiple of 2\pi , called the winding number q \in \BbbZ [5, 38],

n\sum 
i=1

\Delta i,i+1 = 2\pi q .(3.20)

Remark 3.7. Note that the winding number is well-defined on any cycle and for any state
of the system. Thus at any time of the dynamics, we can compute the winding number which
is always an integer.

As angle differences \Delta \omega \mathrm{s}
i,i+1 \in ( - \pi , \pi ], the winding number is bounded as  - n/2 \leq q \leq n/2.

Replacing (3.12) in (3.20) gives

 - 
\sum 
i\in \scrV +

arcsin(\omega \mathrm{s}/ai,i+1) +
\sum 
i\in \scrV  - 

\pi + arcsin(\omega \mathrm{s}/ai,i+1) = 2\pi q(3.21)

 - 
n\sum 
i=1

arcsin(\omega \mathrm{s}/| ai,i+1| ) = 2\pi q  - \pi n - ,(3.22)
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which is (3.19). The left-hand ide of (3.22) is monotonically decreasing in \omega \mathrm{s}. For a given
winding number q, there is then at most one value of \omega \mathrm{s} satisfying (3.22). As the number of
possible values for q is finite, the number of possible synchronization frequencies is finite as
well.

By boundedness of \omega \mathrm{s} (Proposition 3.2) and monotonicity of (3.22), we can compute the
number of possible winding numbers, which is the number of possible stable synchronization
frequencies. The lower bound q\mathrm{m}\mathrm{i}\mathrm{n} (resp., upper bound q\mathrm{m}\mathrm{a}\mathrm{x}) is obtained by taking \omega \mathrm{s} = a\mathrm{m}\mathrm{i}\mathrm{n}

(resp., \omega \mathrm{s} =  - a\mathrm{m}\mathrm{i}\mathrm{n}),

q\mathrm{m}\mathrm{i}\mathrm{n} =
n - 

2
 - 1

2\pi 

n\sum 
i=1

arcsin (a\mathrm{m}\mathrm{i}\mathrm{n}/| ai,i+1| ) , q\mathrm{m}\mathrm{a}\mathrm{x} =
n - 

2
+

1

2\pi 

n\sum 
i=1

arcsin (a\mathrm{m}\mathrm{i}\mathrm{n}/| ai,i+1| ) .

(3.23)

When \omega \mathrm{s} = \pm a\mathrm{m}\mathrm{i}\mathrm{n}, for each edge such that ai,i+1 = \pm a\mathrm{m}\mathrm{i}\mathrm{n}, the angle difference is \pm \pi /2.
Hence the corresponding term in the Jacobian matrix vanishes, and according to Lemma 3.4,
the corresponding fixed point is unstable. Stable fixed points then cannot realize the extreme
values of winding number q\mathrm{m}\mathrm{i}\mathrm{n} and q\mathrm{m}\mathrm{a}\mathrm{x} and the winding number belongs to the interval
(n - /2 - \sigma , n - /2 + \sigma ).

We can even construct the stable synchronous states. Let q \in (n - /2 - \sigma , n - /2+\sigma )\cap \BbbZ and
assume that \omega \mathrm{s} solves (3.19). The corresponding stable synchronous state can be constructed
by defining \bfittheta \omega \mathrm{s} as

\theta \omega \mathrm{s}
i =  - n - i +

i - 1\sum 
j=1

arcsin (\omega \mathrm{s}/| aj,j+1| ) , i \in \{ 1, . . . , n\} ,(3.24)

where n - i is the number of edges with negative weight on the path from vertex 1 to vertex i.
Furthermore this synchronous state is stable because by construction it satifies (3.11).

Proposition 3.6 implies that there is a finite number of stable synchronous states and it
completely characterizes them. In particular, it allows one to compute the number of stable
synchronous states for identical positive weights and identical frequencies, which was obtained
by Rogge and Aeyels [27].

Corollary 3.8 (Rogge and Aeyels [27]). For an oriented cycle with identical positive weights
and identical frequencies, the number of stable synchronous states is \scrN = 2 \cdot Int [(n - 1)/4]+1.

Proof. Identical positive weights imply that \sigma = n\pi /2 and n - = 0. Then q\mathrm{m}\mathrm{i}\mathrm{n} =  - n/4
and q\mathrm{m}\mathrm{a}\mathrm{x} = n/4 and the number of integers in ( - n/4, n/4) is \scrN = 2 \cdot Int [(n - 1)/4] + 1.

Corollary 3.9. For cycles of length lower than or equal to 4, there is a unique stable syn-
chronous state.

Remark 3.10. As in section 2, the results of this section are not subject to any limitation
on the magnitude and sign of the coupling strenghts. We thus cover all possible cases of
oriented cycles with identical natural frequencies.

3.4. Correlation between initial and final winding numbers. Theorem 3.4 of [28] gives
some explicit conditions for initial conditions to converge to a given synchronous state. We
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Figure 3.3. LaSalle function V defined in (3.3) at the stable synchronous states with winding numbers
q \in \{  - 20, . . . , 20\} for an oriented cycle of length n = 83 with coupling strength ai,i+1 = 1 for all i. If, at initial
conditions \bfittheta \circ , the function V takes the value indicated by the dashed black line, then the final winding number
corresponds to one of the blue dots, and the red dots cannot be reached.

give here conditions on initial states limiting the possible final states. The knowledge of stable
synchronous states and the LaSalle function V in (3.3) allow us to derive some conditions on
the final state of the system for given initial conditions. We showed that V is monotonically
decreasing along the trajectories of the system. Thus, if V (\bfittheta \circ ) < V (\bfittheta \ast ), starting at \bfittheta \circ , the
system cannot converge to the synchronous state \bfittheta \ast .

For instance, for positive identical coupling constants ai,i+1 \equiv K, it is known [27] that
the stable synchronous states satisfy \theta i  - \theta i+1 = 2\pi q/n, where q \in \BbbZ is the winding number.
At such a state, the function V takes value Vq := 2nK[1 - cos(2\pi q/n)]. Hence, for almost all
initial conditions \bfittheta \circ such that V (\bfittheta \circ ) \leq Vq, the system will converge to a stable synchronous
state with winding number | q\prime | \leq | q| . This limits the possible final states for given initial
conditions (see Figure 3.3).

These observations suggest that along the time evolution of the system, the winding
number tends to decrease. To corroborate this, we simulated the time evolution of (3.1)
for 100,000 random initial conditions, picked with uniform distribution on the state space.
We consider an oriented cycle of n = 83 oscillators, with identical natural frequencies, and for
each simulation, we compare the initial and final winding numbers, q\mathrm{i}\mathrm{n}\mathrm{i} and qfi\mathrm{n}, respectively.
In the left panel of Figure 3.4, the cloud of points follows a line through the origin with slope
larger than one. This implies that even if in some cases the winding number increases along
the simulation, there is a general trend toward a decrease of the winding number along the
trajectory of the system, especially for large winding numbers. The center panel of Figure 3.4
displays, for each values of q\mathrm{i}\mathrm{n}\mathrm{i}, the distribution of qfi\mathrm{n} normalized to zero mean. To the eye,
these curves look Gaussian. We then fit a Gaussian distribution to each of them and show
their mean and standard deviation in the right panel of Figure 3.4. The slope of the mean
\mu is less than one, which indicates again that winding numbers tend to decrease (in absolute
value) along simulations. It is striking to notice that the standard deviation (which was not
normalized) is almost the same for all initial winding numbers. We have not been able to
explain this occurence, which we did not expect.
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Figure 3.4. Left: Distribution of initial and final winding numbers for 100,000 simulations of (3.1) with
n = 83, \omega i \equiv 0, and random initial conditions. The color code indicates how many simulations started with
winding number q\mathrm{i}\mathrm{n}\mathrm{i} and ended at winding number qfi\mathrm{n}. We see that the dynamics tends to reduce the winding
number in absolute value. For instance, we see that | qfi\mathrm{n}| < | q\mathrm{i}\mathrm{n}\mathrm{i}| for all simulations with | q\mathrm{i}\mathrm{n}\mathrm{i}| > 8. Center:
Distribution of final winding number for our simulations. Each curve corresponds to a different initial winding
number q\mathrm{i}\mathrm{n}\mathrm{i}, ranging from  - 7 to 6. We consider only an initial winding number with large enough statistics.
For each curve, the mean is normalized to zero. To the eye, each curve follows a Gaussian distribution. Notice
that standard deviations are not normalized, i.e., each curve has approximately the same standard deviation.
Right: Mean and standard deviation of the Gaussian fit for each curve of the center panel. The slope of the
mean with respect to q\mathrm{i}\mathrm{n}\mathrm{i} is approximately 0.21, corroborating the fact that the winding number tends to decrease
along simulations. We observe again that each curve has the same standard deviation.

4. Combination of cyclic and acyclic networks. Based on the results of the previous
sections, we extend next our results to networks built with oriented cycles and acyclic oriented
graphs. Given an oriented graph \scrG 1, we say that a subgraph \scrG 2 is a leading component if there
are no edges going out of \scrG 2.

4.1. Cases with almost global synchronization.

4.1.1. One large leading cycle. Consider a graph composed of an acyclic oriented graph
with a single leading component which is an oriented cycle (left panel of Figure 4.1), whose
oscillators have identical natural frequencies. The cycle synchronizes by Theorem 3.1, at
a synchronization frequency \omega \mathrm{s}. The acyclic part is then led by oscillators with identical
frequencies. Applying the same recursive argument as in the proof of Theorem 2.2, we can
show that all of the acyclic part synchronizes for almost all initial conditions, provided that
natural frequencies of its oscillators satisfy

| \omega i  - \omega \mathrm{s}| \leq \rho i , i \in \{ 1, . . . , n\} .(4.1)

4.1.2. Multiple small leading cycles. Consider a graph composed of an acyclic oriented
graph whose leading components are either simple leaders or a leading cycles of length at most
4 (right panel of Figure 4.1). Here the leaders and the oscillators of the leading cycles have
identical natural frequencies. The conditions for global synchronization are then the same as
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Figure 4.1. Left: Example of an oriented graph with only a leading cycle. The leading cycle is in red and
the the blue part is an acyclic oriented graph. Such a network globally synchronizes. Right: Example of an
almost globally synchronizing oriented graph with multiple leaders and leading cycles of length not larger than
4.

Figure 4.2. Left: Example of a nonglobally synchronizing network. The cycle can synchronize to different
frequencies depending on the initial conditions and the solitary leader has a fixed frequency. Right: Example of
two cycles connected by an oriented edge. Simulations indicate that this network does not always synchronize,
depending on initial conditions.

in Theorem 2.2. A cycle of length less than or equal to 4 synchronizes to the frequency of its
oscillators because it is too short to carry a nonzero winding number (see Corollary 3.9). The
acyclic part is then led by oscillators with identical frequencies and almost always synchronizes
following the same recursive argument as in the proof of Theorem 2.2.

4.2. Cases where global synchronization is not achieved.

4.2.1. Multiple large leading cycle. A graph composed of an acyclic oriented graph with
at least two leading components, where (at least) one of them is a leading cycle of length 5 or
more (left panel of Figure 4.2). The leading cycle can synchronize to various frequencies. If
it does not synchronize to the same frequency as the other leader(s), then synchrony cannot
be reached. But if it synchronizes to the same frequency, then the network synchronizes.
Synchronization is then not global, but is possible for a set of initial conditions with nonzero
measure for some natural frequencies and edge weights.

4.2.2. Two large cycles. We numerically verified that two cycles of length more than
5 coupled as in the right panel of Figure 4.2 can synchronize or not depending on inital
conditions. We have not been able to get any analytical insight for this case.

5. Conclusion. We studied synchronization in oriented and signed Kuramoto oscillator
networks. By considering the simplest oriented interaction graphs, we completely character-
ized frequency-synchronization of the Kuramoto model on oriented and signed acyclic networks
and on oriented and signed cycles with identical natural frequencies. All our results are valid
regardless of the magnitude and sign of the couplings; they are then as general as possible.
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In oriented and signed acyclic networks, we gave necessary and sufficient conditions for
almost global synchronization and we showed that, if it exists, there is a unique stable syn-
chronous state. We further showed in section 2.3 that, in general, these conditions cannot be
improved without more conditions on the networks considered.

We proved that on oriented and signed cycles with identical natural frequencies, the Ku-
ramoto oscillators always synchronize. Furthermore, we showed that the number of stable
synchronous states is finite, and we gave an explicit formula to compute their number. We
observed in section 3.4 that, for initial conditions with a given winding number q\mathrm{i}\mathrm{n}\mathrm{i}, the dis-
tribution of winding numbers after the time evolution of (3.1) is Gaussian. It is striking that
for all values of q\mathrm{i}\mathrm{n}\mathrm{i}, the variance of the distribution is identical. We are, at this point, not
able to explain this fact.

We finally showed through some examples that in more general oriented interaction graphs,
the dynamics become much more rich, even for some simple combinations of acyclic graphs
and oriented cycles.

Appendix A. Asymptotically autonomous semiflows. In [30], Mischaikow, Smith, and
Thieme relate the solution of the nonautonomous system \.x = f(t, x) on \BbbR n to the solution
of the autonomous system \.y = g(y) on \BbbR n, where f(t, \cdot ) \rightarrow g(\cdot ) for t \rightarrow \infty . We give some
preliminary definitions and state then two results that we need in the proof of Theorem 2.2.

Definition A.1 (Mischaikow, Smith, and Thieme [30]). Let \Theta : T\times \BbbR n \rightarrow \BbbR n be a continuous
function, where T = \{ (t, s) : 0 \leq s \leq t < \infty \} . The function \Theta is a nonautonomous semiflow
on \BbbR n if it satisfies

\Theta (s, s, x) = x , s \geq 0 ;(A.1)

\Theta (t, s,\Theta (s, r, x)) = \Theta (t, r, x) , t \geq s \geq r \geq 0 .(A.2)

The semiflow is called autonomous if in addition

\Theta (t+ r, s+ r, x) = \Theta (t, r, x) .(A.3)

A nonautonomous semiflow \Theta is called asymptotically autonomous with limit semiflow \Phi if
\Phi is an autonomous semiflow on \BbbR n and

\Theta (tj + sj , sj , xj) \rightarrow \Phi (t, x) , j \rightarrow \infty ,(A.4)

for any sequences tj \rightarrow t, sj \rightarrow \infty , and xj \rightarrow x with x, xj \in \BbbR n, 0 \leq t, tj <\infty , and sj \geq 0.
The \omega -limit set of \Theta is

\Lambda \Theta (s, x0) :=

\biggl\{ 
x \in \BbbR n : \exists \{ tj\} , j \in \BbbN , s.t. lim

j\rightarrow \infty 
tj = \infty and lim

j\rightarrow \infty 
\Theta (s, tj , x0) = x

\biggr\} 
.(A.5)

Definition A.2 (Mischaikow, Smith, and Thieme [30]). A subset A of \BbbR n is said to be
positively invariant for an autonomous semiflow \Phi if for all a \in A and t \geq 0, \Phi (t, a) \in A.
The subset A is invariant for \Phi if it is positively invariant and for all a \in A and t \geq 0, there
exits b \in a such that \Phi (t, b) = a.
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Definition A.3 (Mischaikow, Smith, and Thieme [30]). Let A be a nonempty positively
invariant subset of \BbbR n and x, y \in A. For \varepsilon > 0, t > 0, an (\varepsilon , t)-chain from x to y (in A) is a
sequence \{ x = x1, x2, . . . , xn+1 = y ; t1, t2, . . . , tn\} of points xi \in A and times ti \geq t such that
\| \Phi (ti, xi)  - xi+1\| < \varepsilon , i \in \{ 1, . . . , n\} . A point x \in A is called chain recurrent (in A) if for
every \varepsilon > 0, t > 0 there is an (\varepsilon , t)-chain from x to itself in A. The set A is said to be chain
recurrent if every point in A is chain recurrent in A.

Roughly speaking, a set A is chain recurrent if for any x \in A, there is a sequence of
trajectories starting in A remaining arbitrarily close to A, such that the end point of the ith is
arbitrarily close to the starting point of (i+1)th trajectory, and such that the last trajectory
ends arbitrarily close to x.

Consider the systems of ordinary differential equations \.x = f(t, x) and \.y = g(y) on \BbbR n.
Denote by \Theta (t, s, x0) the solution x(t) of the first system, with x(s) = x0, and denote by
\Phi (t, x0) the solution y(t) of the second system, with y(0) = x0.

Proposition A.4 (Mischaikow, Smith, and Thieme [30]). If f(t, x) \rightarrow g(x), t \rightarrow \infty , uni-
formly2 on compact subsets of \BbbR n, then \Theta is asymptotically autonomous with limit semiflow
\Phi .

Theorem A.5 (Mischaikow, Smith, and Thieme [30]). Let \Theta be an asymptotically au-
tonomous semiflow with limit semiflow \Phi , and let its orbit \{ \Theta (t, s, x) : t \in [0,\infty )\} have compact
closure in \BbbR n. Then \Lambda \Theta (s, x0) is invariant and chain recurrent for the semiflow \Phi and attracts
\Theta (t, s, x0).
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