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In dynamical systems, the full stability of fixed point solutions is determined by their basins of

attraction. Characterizing the structure of these basins is, in general, a complicated task, especially

in high dimensionality. Recent works have advocated to quantify the non-linear stability of fixed

points of dynamical systems through the relative volumes of the associated basins of attraction

[Wiley et al., Chaos 16, 015103 (2006) and Menck et al. Nat. Phys. 9, 89 (2013)]. Here, we revisit

this issue and propose an efficient numerical method to estimate these volumes. The algorithm first

identifies stable fixed points. Second, a set of initial conditions is considered that are randomly dis-

tributed at the surface of hypercubes centered on each fixed point. These initial conditions are

dynamically evolved. The linear size of each basin of attraction is finally determined by the propor-

tion of initial conditions which converge back to the fixed point. Armed with this algorithm, we

revisit the problem considered by Wiley et al. in a seminal paper [Chaos 16, 015103 (2006)] that

inspired the title of the present manuscript and consider the equal-frequency Kuramoto model on a

cycle. Fixed points of this model are characterized by an integer winding number q and the number

n of oscillators. We find that the basin volumes scale as ð1� 4q=nÞn, contrasting with the Gaussian

behavior postulated in the study by Wiley et al.. Finally, we show the applicability of our method

to complex models of coupled oscillators with different natural frequencies and on meshed net-

works. Published by AIP Publishing. https://doi.org/10.1063/1.4986156

Many natural systems of coupled elements, such as fire-

flies, pacemaker cells, or electrical grids, exhibit synchro-

nization phenomena. When a system synchronizes, each

of its components behaves coherently with respect to

others, due to the coupling between them. A central issue

in various fields of science and engineering is to under-

stand how robust is this synchronized state against exter-

nal perturbations or imperfections in the system.

Mathematically, this problem is usually hard. Here, we

propose a tractable numerical approach which first iden-

tifies the synchronization states and then evaluates the

magnitude of the largest perturbation such that the sys-

tem converges back to its initial synchronized state. Our

method allows us to tackle large complex systems in a

reasonable computation time with a good resolution,

which was not the case for numerical methods proposed

so far.

I. INTRODUCTION

Models of coupled dynamical systems are widely used

to investigate collective behaviors in complex systems. One

particularly puzzling phenomenon is that of synchrony,

where different individual dynamical systems start to behave

coherently when sufficiently strongly coupled.3–7 The

Kuramoto model was introduced8,9 to describe such synchro-

nizing behaviors. This model considers a set of n coupled

harmonic oscillators, with angle coordinate hi and natural

frequency Pi

_hi ¼ Pi �
X

j

Kij sin ðhi � hjÞ; i ¼ 1;…; n ; (1.1)

where Kij 2 R is the coupling constant between oscillators i
and j. In its original formulation, the Kuramoto model con-

siders identical all-to-all coupling, Kij � K=n.8,9 It was found

that for a coupling constant K exceeding a critical value Kc,

a finite non-empty set F � f1;…; ng of oscillators synchro-

nizes, i.e., _hi � _hj ¼ 0, for i; j 2 F. This type of synchrony,

where oscillators rotate at the same frequency, _hi ¼ _hj, for

i; j 2 F, but not necessarily the same phase, is called fre-
quency synchronization. Phase synchronization, where addi-

tionally hi ¼ hj; 8i; j, is in general not achievable for

heterogeneous natural frequencies. In this manuscript,

“synchronization” refers to “frequency synchronization.”

The value of Kc can be computed by solving an implicit

equation.7,10–12 The critical coupling Kc depends on the distri-

bution of the natural frequencies g(P). In particular, if the sup-

port of the distribution g(P) is compact, full-synchrony, i.e.,
_hi � _hj ¼ 0 for all i, j, is reached for large enough K.13,14

The Kuramoto model in its various versions has evolved

into a paradigm for investigating synchronizing behaviors. Its

popularity stems from its simple formulation, which allows a

tractable analytical treatment while still capturing the essence

of the synchronizing behavior of many real systems, in fields

as diverse as physics,15 chemistry,16 biology,17 or electrical

engineering.18 These two advantages explain the popularity of

the Kuramoto model in science and engineering, which led to

many generalizations reviewed for instance in Refs. 6 and 7.

Full frequency synchrony in the Kuramoto model is

reached at a fixed point of Eq. (1.1). A natural question is
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then to assess the stability of these fixed points. Most works

on the stability of fixed points of dynamical systems rely on

the seminal work by Lyapunov19,20 at the end of the XIXth

century. Lyapunov first investigated linear stability, by line-

arizing the dynamics around a given fixed point. For small

deviations, the dynamics is determined by a stability matrix

whose eigenvalues are called Lyapunov exponents. The fixed

point is linearly stable if all its Lyapunov exponents are non-

positive. This guarantees that small enough deviations go

exponentially fast to zero. Linear stability is however a local

concept and gives no information about the stability of the

system against large perturbations.

Lyapunov went beyond linear stability with his second

method, which assesses stability based on the existence of

what is now called a Lyapunov function.19,20 The latter gen-

eralizes the concept of energy for the states of a dynamical

system. The Lyapunov function of a system can be used to

determine the basin of attraction of a given fixed point,21,22

which is the set of all initial conditions converging dynami-

cally to this fixed point. A global measure of the stability of

a fixed point is given by the volume of its basin of attrac-

tion—this has been called basin stability.1,2,23 Clearly, the

larger the basin of attraction, the more likely it is to reach the

corresponding fixed point dynamically. This gives a global

measure of the stability of a fixed point.

In networks of all-to-all coupled oscillators, tight esti-

mates of the volume of the basin of attraction of the synchro-

nous state are known.24 Much less is known about the basins

of attraction of cycle networks. As pointed out by Korsak25

already in 1972 in the context of electrical networks, the

Kuramoto model on a cycle network admits several stable

fixed points, characterized by their winding numbers (to be

defined in Sec. II). In Ref. 1, Wiley et al. considered such a

network topology with identical frequencies and investigated

how the volume of the basin of attraction of a stable fixed

point is related to its winding number. In particular, they are

interested in the likelihood of the system to reach the phase

synchronous state. This likelihood is directly related to the

volume of the basin of attraction of the phase synchronous

state, which they call the “sync basin.” Starting from random

initial conditions, they numerically evolved the system until

it converged to a stable fixed point. The volume of the basin

of attraction of every fixed point was then estimated by the

proportion of initial conditions that converged to it. It was

found that the volume of the basins of attraction follows a

Gaussian distribution with respect to the winding numbers q,

as shown in Fig. 1 (red dots). One issue with that procedure

is that the winding numbers of randomly chosen initial con-

ditions also follow a Gaussian distribution

pðqÞ ¼ ð
ffiffiffiffiffiffi
2p
p

rÞ�1
exp �q2=2r2

� �
: (1.2)

From the data shown in Fig. 1, we obtain a standard

deviation of r ¼ 2:63 for the distribution of winding num-

bers of the initial conditions and a narrower distribution with

r ¼ 1:63 for the converged fixed points (the latter value in

agreement with Ref. 1). The Gaussian distribution for the ini-

tial conditions can easily be understood once one realizes

that picking an initial condition is similar to a random

walk.26 The node index along the cycle corresponds to a

time step index, and the angle on each node gives by how

much and in what direction the random walk progresses.

Large winding numbers correspond then to random walks

with large excursions. This analogy explains the obtained

Gaussian distribution for initial winding numbers.

We also observe that the winding number of the initial

conditions and of the converged fixed points is significantly

correlated, with a correlation coefficient of 0.47. Therefore,

if one does not have enough resolution for the initial condi-

tions, the distribution of the winding number of the final

states may, at least partially, reflect the initial distribution of

q instead of the volume of the basins of attraction. Due to the

high dimensionality of the state space (n¼ 83 in Fig. 1 and

n¼ 80 in Ref. 1), simulations with random initial conditions

would need an unfeasible number of runs to representatively

cover the whole state space.

To the best of our knowledge, the only paper, besides

Ref. 1, focusing specifically on the basins of attraction of the

Kuramoto model on the cycle network is Ref. 27, which ana-

lytically obtains lower bounds on the volume of the basins of

attraction for a cycle of Kuramoto oscillators with unidirec-

tional coupling.

We therefore revisit this issue by constructing a new

systematic numerical method. Our approach is first to find all

the stable fixed points of Eq. (1.1) describing all the possible

frequency-synchronous states and then to perturb them in

random directions with an increasing magnitude to assess the

volume of their basins of attraction. The volume is estimated

from the magnitude of the largest perturbation still converg-

ing to the initial fixed point. In the case of a single cycle

with identical frequencies, one can analytically identify all

stable fixed points, and the problem is sufficiently tractable

to obtain an analytical estimate of the volume of the basins

of attraction, which we confirm numerically. We show that

for n� 1 and q not too small, the volume of the basins of

attraction scales as Vq � ð1� 4q=nÞn instead of the

Gaussian law in the study by Wiley et al. [Eq. (1.2)]. We

FIG. 1. Distributions of the initial (blue) and final (red) winding numbers for

the equal frequency Kuramoto model on a cycle [Eq. (2.1)] with n¼ 83

nodes. Initial states have been chosen randomly. Continuous curves are

Gaussian fits with r ¼ 2:63 (blue) and r ¼ 1:63 (red).
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then extend our perturbation procedure to cycle networks

with non-identical frequencies and to meshed networks with

identical frequencies. Our numerical method guarantees that

we investigate every basin of attraction with a representative

number of initial conditions. It is based on (i) a numerical

procedure to systematically find stable fixed points of Eq.

(1.1) on any meshed network and (ii) the perturbation proce-

dure described above. We believe that our method could be

applied to other fields of research such as planar spin

glasses28 or disordered Josephson junction arrays29 in con-

densed matter physics.

II. SINGLE CYCLE

We first revisit the model in Ref. 1 and consider the

Kuramoto model on a cycle with n nodes, equal frequencies

Pi � P0, for all i and identical coupling Kij � K, for all con-

nected nodes i and j. In a frame rotating with angular fre-

quency P0, after the change in variables hi ! hi þ P0t, Eq.

(1.1) reduces to

_hi ¼ �K sin ðhi � hi�1Þ � K sin ðhi � hiþ1Þ; i ¼ 1;…; n;

(2.1)

where indices are taken modulo n.

We define the angle difference Dij :¼ hi � hj taken mod-

ulo 2p in the interval ð�p; p�. Fixed points of Eq. (2.1) sat-

isfy either

Di;iþ1 ¼ Di�1;i or Di;iþ1 ¼ 6p� Di�1;i; (2.2)

where the sign in front of p in the right-hand side is chosen

to ensure that Di;iþ1 2 ð�p; p�.
Given an angle vector ~h ¼ ðh1;…; hnÞ, we define the

integer winding number on the cycle

qð~hÞ :¼ ð2pÞ�1
Xn

k¼1

Dkþ1;k: (2.3)

When summing the angle differences around the cycle,

we have to end at an integer multiple of 2p to guarantee

single-valuedness of angles. Therefore, qð~hÞ 2 Z.

Remark 1. For any graph topology, we can always define

a winding number on every cycle. A fixed point is then char-

acterized by a winding vector, whose components are the

winding numbers on each cycle.

According to Ref. 30, any stable fixed point of Eq. (2.1)

must have all angle differences between neighboring oscilla-

tors in ½�p=2; p=2�. Equation (2.2) then implies that there is

a unique stable fixed point,~h
ðqÞ

, with winding number q

D ¼ 2pq=n() hðqÞi ¼ 2pqi=nþ hðqÞ0 ; (2.4)

for all i ¼ 1;…; n, where hðqÞ0 is an arbitrary uniform angle

shift. This implies that for a fixed point to be stable, the

winding number cannot be larger than qmax :¼ Intðn=4Þ,
which would imply angle differences larger than p=2 other-

wise. Winding numbers for stable fixed points then range

from �qmax to þqmax, which give 2qmax þ 1 stable fixed

points,30 with the caveat that if n is a multiple of 4, the fixed

point with winding number qmax has all Lyapunov exponents

equal to zero and its basin of attraction has measure zero.31

A fixed point of Eq. (2.1) is unstable if one30 or more32

angle differences are larger than p=2. In this case, a fixed

point has n – j angle differences Dkþ1;k � D 2 ½�p=2; p=2�
and j angle differences Dkþ1;k � 6p� D, with j> 0, andP

k Dkþ1;k ¼ 2pq.

A. Identical frequencies: Analytical approach

For a cycle network of length n with identical frequen-

cies, we derive an analytical expression for the volume of

the basins of attraction. Our approach is to approximate the

basin of attraction of a given stable fixed point by the hyper-

cube centered at the fixed point, whose radius is the distance

to the closest unstable fixed point.

As Eq. (2.1) is invariant under a constant shift of all

angles hðqÞ0 , we will work in the hyperplane Hn�1 orthogonal

to the vector ð1;…; 1Þ. The angle vector~h
ðqÞ

of Eq. (2.4) pro-

jected onHn�1 has components

hðqÞi ¼
2pq

n
i� n� 1

n
qp : (2.5)

According to Ref. 33, a fixed point of Eq. (2.1) has a unique

unstable direction in angle space if and only if it has a single

angle difference between neighboring oscillators which is larger

than p=2. Such an unstable fixed point is called a 1-saddle point.

Then, consider a 1-saddle point with winding number q0, where

the kth angle difference is larger than p=2. Combining Eqs.

(2.2) and (2.3), its winding number q0 is given by

ðn� 1Þ � D0 þ p� D0 ¼ 2pq0 () D0 ¼ 2q0 � 1

n� 2
p : (2.6)

This allows us to compute the components of the 1-saddle

angle vector,~uðq
0Þ, projected onHn�1 (see Appendix A)

uðq
0Þ

i ¼p
2q0 �1

n�2
iþ�2n2kþ2nk�8q0k�n

2nðn�2Þ þT
ðkÞ
i

" #
; (2.7)

where

T
ðkÞ
i ¼

10nq0 � n2

2nðn� 2Þ ; if i < k;

2nq0 þ n2

2nðn� 2Þ ; if i 	 k :

8>>>><
>>>>:

(2.8)

We have found numerically that stable fixed points and

1-saddles are closest when they have the same winding num-

ber (see Appendix C). We thus investigate the case q ¼ q0.
The difference between angles is easily obtained as

hðqÞi �uðqÞi ¼

ð1þ2i�2kþnÞðn�4qÞ
2ðn�2Þn p; if i< k;

ð1þ2i�2k�nÞðn�4qÞ
2ðn�2Þn p; if i	 k;

8>>>><
>>>>:

(2.9)

which gives the distance between the stable fixed point and

the unstable 1-saddle point
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k~hðqÞ �~uðqÞk1 ¼
ðn� 1Þðn� 4qÞ

2ðn� 2Þn p : (2.10)

In particular, the large n limit is

lim
n!1
k~hðqÞ �~uðqÞk1 ¼

p
2

1� q

qmax

� �
: (2.11)

We remark that we lost the dependence on k, meaning that

the stable fixed point~h
ðqÞ

is equidistant to all 1-saddles with

the same winding number. This indicates that the basins of

attraction are isotropic in the directions of the 1-saddle

points.

Since~h
ðqÞ

is equidistant to all 1-saddles, one expect, for

n� 1, that the volume Vq of the basin of attraction is well

approximated by an hypercube of side k~hðqÞ �~uðqÞk1, up to

a constant factor, i.e.,

Vq � k~h
ðqÞ �~uðqÞkn

1 � ð1� q=qmaxÞn : (2.12)

As qmax ¼ Intðn=4Þ; Vq ! e�4q in the limit n!1 for

fixed q.

We further found numerically that 1-saddles are closer

to the stable fixed points than p-saddles, p> 1 (see Appendix

C). This suggests that Eq. (2.12) underestimates the volume

of basins of attraction.

Remark 2. In our convention, angle differences are taken

in the interval ð�p; p�. Trying to construct a 1-saddle with

q0 ¼ 0, one obtains

D0 ¼ � p
n� 2

() p� D0 ¼ n� 1

n� 2
p > p : (2.13)

The angle vector obtained in this way has winding number

q0 ¼ �1. This means that there is no 1-saddle with winding

number zero. Equation (2.9) then applies to q> 0. It can be

checked that there are no p-saddles with winding number

q¼ 0 for any p 	 1.

B. Identical frequencies: Numerical approach

To validate the scaling of Eq. (2.12), we numerically

estimate the volume of the basin of attraction of each stable

fixed point of Eq. (2.1). For a cycle network of length n with

identical frequencies, all stable fixed points are known and

given by Eq. (2.5). To estimate the volume of the basin of

attraction of each ~h
ðqÞ

, we randomly choose d normalized

perturbation vectors ~�j 2 Hn�1 � Rn, for j ¼ 1;…; d;

k~�jk1 ¼ 1. We then consider perturbed states

~gq;j;a :¼~hðqÞ þ pa~�j; (2.14)

as initial conditions for the dynamics of Eq. (2.1), with

a 	 0. The parameter a is increased from zero to aq;j which

we define as the largest value such that~gq;j;a converges back

to ~h
ðqÞ

under the dynamics of Eq. (2.1). The distance

between the stable fixed point ~h
ðqÞ

and the boundary of its

basin of attraction in the direction~�j is given by paq;j.

We performed 4th-order Runge-Kutta simulations of the

dynamics of Eq. (2.1) for n ¼ 23; 43; 83; 163; and 323.

These values are chosen to maximize the volume of the basin

of attraction for the largest winding number qmax ¼ Intðn=4Þ,
which, as mentioned above, vanishes when n is a multiple of

4.31 We took d¼ 1000 randomly chosen perturbation direc-

tions and increased a by steps of 0.01. For each q, we can

then estimate the proportion of the hypercube of side a cen-

tered at~h
ðqÞ

which belongs to its basin of attraction as

pqðaÞ :¼
Card ~gq;j;a j~hð0Þ¼gq;j;a;

~hðt!1Þ¼~hðqÞ
n o

d
; (2.15)

where Card stands for the cardinality of the ensemble. In Fig.

2, we see that this proportion remains close to 1 for small val-

ues of a and quickly drops to zero around some q-dependent

value of a. Given a threshold s 2 ½0; 1�, we can then define

asðqÞ :¼ supfa j pqðaÞ 	 sg; (2.16)

as a typical linear size of the basin of attraction. The abrupt

drop of the curves in Fig. 2 implies that the precise value of

s is not too significant to understand the behavior of aq;j with

respect to q, provided that s is too close to neither 1 nor 0.

We arbitrarily chose s ¼ 0:7 but checked that similar conclu-

sions follow for s ¼ 0:6 and 0.8.

In Fig. 3, we plot asðqÞ for various system sizes. Except a

saturation for small q values, we observe a linear behavior of

as with respect to q. Furthermore, curves for different values

of n varying by more than one order of magnitude are rescaled

almost on top of one another when plotting them against

q=qmax. Both findings corroborate Eq. (2.10). Figure 4 shows

for each q, the quartiles of the values of aq;j [defined by asðqÞ
for s ¼ 0:25; 0:5; and 0:75] and the extreme values minjaq;j

and maxjaq;j, for n¼ 323, as well as the distance between the

stable fixed point ~h
ðqÞ

and the 1-saddle ~uðqÞ given by Eq.

(2.10) (dashed line). All curves have linear behavior, except

for small q. The discrepancy between numerics and Eq. (2.10)

comes from the fact that the random perturbations are not

FIG. 2. Proportion of perturbed states converging back to their reference sta-

ble fixed point with respect to the parameter a in Eq. (2.14), for the equal-

frequency Kuramoto model on a single cycle with n¼ 83 nodes and winding

numbers q ¼ 0; 5; 10; 15; and 20 from right to left.
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aligned with the direction of the shortest distance to a 1-

saddle. In other words, Eq. (2.10) is a lower bound on the dis-

tance between the stable fixed point~h
ðqÞ

and the boundary of

its basin of attraction. As mentioned above, 1-saddles are

closer to the stable fixed points than other saddle points, which

are also on the boundary of the basins of attraction. Our

method of using the 1-saddles to evaluate the volume of the

basins of attraction underestimates it but clearly gives its right

parametric dependence on n and q.

C. The size of the sync basin revisited

The scaling obtained in Eq. (2.12), for large values of n,

is different from the Gaussian scaling postulated in Ref. 1.

The numerical method used there took initial conditions at

random in the angle space ð�p; p�n, which would need a

huge number of runs to reach a resolution, allowing a fair

estimate of the volumes of the basins of attraction. Even for

a moderate resolution of 0.5 in each angle direction, one

would need approximately ð2p=0:5Þ83 
 1091 different ini-

tial conditions, which are obviously unfeasible numerically.

Hence, estimates based on brute-force numerical methods

cannot catch the scaling behavior in dynamical systems with

large dimensionality, especially for large winding numbers,

which have very small basins of attractions.

Our approach overcomes this difficulty. Taking advan-

tage of our knowledge of the stable fixed points, we are able

to restrict the exploration of the basins of attraction to the

neighborhood of the stable fixed points. We avoid scanning

the whole angle space, which significantly reduces the com-

putation time and increases the accuracy of the method.

D. Non-identical frequencies

We introduced our method in the simplest case of a

cycle network with identical frequencies. To generalize our

understanding of the problem, we now add non-identical fre-

quencies to the same cycle network. Even if we cannot

obtain the stable fixed points analytically, we can find them

numerically and then apply the same numerical procedure as

in the identical frequency case. Instead of Eq. (2.1), our

single-cycle model is now defined by

_hi ¼ Pi � K sin ðhi � hi�1Þ � K sin ðhi � hiþ1Þ; (2.17)

with Pi randomly and homogeneously taken in ½�b; b�, satis-

fying
P

i Pi ¼ 0. For small values of b, the non-identical fre-

quencies almost always lead to small variations of the fixed

points,34 and thus, the volume of the basins of attraction

should not change much. To find the stable fixed points of

Eq. (2.17), we start with the fixed points for b¼ 0 given in

Eq. (2.5) and follow them with a 4th-order Runge-Kutta

implementation of Eq. (2.17), while gradually increasing b
to the desired value. This allows us to identify and follow

numerically the location of the stable fixed point~h
ðqÞðfPigÞ,

which is not anymore given by Eq. (2.5), but is still charac-

terized by its winding number q. We then perturb this stable

fixed point in 1000 random directions with the increasing

magnitude as in Eq. (2.14) and apply the same procedure as

in Sec. II B to evaluate the volume of the basins of attraction.

The results are shown in Fig. 5 for n¼ 83 and

b ¼ 0; 0:01; 0:02; 0:05; and 0:1. For values of q which are

neither too small nor too large, the linear behavior of as is

preserved, especially for small b. As can be expected,35 as

soon as we add some finite natural frequencies, the fixed

points with large q lose stability. More surprising, at first

glance, is the abrupt drop of as for large q with little change

at small q. We offer an explanation for this behavior.

The dynamics of Eq. (1.1) is given by the gradient of the

Lyapunov function

Vð~hÞ ¼ �
X

i

Pihi �
X
i<j

Kij cos ðhi � hjÞ; (2.18)

� @V
@hi
¼ _hi : (2.19)

FIG. 3. Typical linear size of the basins of attraction with respect to the wind-

ing number for the model of Eq. (2.1). Threshold values as defined such that

70% of the 1000 perturbed states~gq;j;a converge to~h
ðqÞ

are plotted as a func-

tion of q=qmax (main panel) and q (inset), for n ¼ 23; 43; 83; 163; and 323.

FIG. 4. Quartiles of the values of aq;j obtained from 1000 random directions
~�j (purple dots), for n¼ 323. A quarter of aq;j values are between two verti-

cally consecutive points. Dashed line: distance between the stable fixed

point~h
ðqÞ

and the 1-saddles ~uðqÞ calculated in Eq. (2.10).
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Increasing b modifies V [the first term on the right-hand side

of Eq. (2.18)] and makes the fixed points move in angle

space. Eventually, a stable fixed point ~h
ðqÞ

will meet an

unstable fixed point and then lose stability through a saddle-

node bifurcation. In Fig. 6, we give a schematic illustration

of V on a cycle, projected on an appropriate direction in

angle space, such that stable and unstable fixed points are

aligned in one angle dimension. As long as a fixed point

remains stable, the volume of its basin of attraction does not

change much [compare the green segments in Figs. 6(a) and

6(b)]. The fixed point then abruptly vanishes when b
becomes too large. Since as is an average over many ran-

domly chosen directions, its value abruptly drops when the

stable fixed point vanishes.

In Appendix B, we furthermore estimate the maximal

winding number possible for a given width b of frequency

distribution and find that it agrees qualitatively with the

numerically observed maximal winding numbers.

III. MESHED NETWORKS

We finally extend the perturbation method described

above to more complicated, meshed networks. It is a two-

stage method where we first numerically identify fixed points

of Eq. (1.1) on complex graphs and then perturb the obtained

stable fixed points in the same way as in Sec. II.

A. Identifying stable fixed points

Stable fixed points are much harder to find on complex

graphs. Except for the ~h
ð0Þ ¼ ð0;…; 0Þ fixed point for equal

frequencies, they are usually impossible to find analytically.

To tackle this problem, we construct a numerical algorithm

similar to but different from the one proposed in Ref. 31.

From Refs. 18 and 30, we know that two fixed points of

Eq. (1.1) differ only by a collection of loop flows quantized

by their winding numbers (similar to vortices in supercon-

ductors). We define a vector composed of the winding num-

bers on each cycle of a graph G as

~qGð~hÞ ¼ ðq1; q2;…; qmÞ; (3.1)

where m is the total number of cycles in G. Assuming

jhi � hjj < p=2 for all connected nodes i, j, each stable

fixed point ~h
�

can be uniquely labelled by its winding

vector ~qGð~h
�Þ.18,30,31 For Pi � 0, the Lyapunov function,

Eq. (2.18), reduces to

Vð~hÞ ¼ �
X
i<j

Kij cos ðhi � hjÞ; (3.2)

which is the Hamiltonian of an XY model, describing the

interaction of planar classical spins.29 Stable fixed points are

the local minima of this energy function, and it is known that

they correspond to vortex-carrying states, i.e., states with

non-zero winding vector ~qGð~hÞ. We therefore search for sta-

ble fixed points via an iterative process starting from vortex-

carrying initial states described by

hi ¼ q arctan
yi � y0

xi � x0

� �
; (3.3)

FIG. 6. Schematic illustration of the projection of the Lyapunov function V of Eq. (2.18) in one dimension, with Pi 2 ½�b;b�. The value of b increases from

left to right, leading to saddle-node bifurcations. Colored dots and lines are stable fixed points and their respective basins of attraction. Black dots are unstable

fixed points. Each stable fixed point gets closer to an unstable fixed point [panels (a) and (b)], but the volume of the basins of attraction does not change much

unless one fixed point loses stability [panel (c)]. Fixed points with large winding numbers [red region in panel (a)] lose stability before fixed points with lower

winding numbers (blue and green regions).

FIG. 5. Typical linear size of the basins of attraction with respect to the

winding number for the model of Eq. (2.17). Threshold values as defined

such that 70% of the 1000 perturbed states~gq;j;a converge to~h
ðqÞ

are plotted

as a function of q=qmax for n¼ 83 and frequency distribution in ½�b; b� with

b ¼ 0; 0:01; 0:02; 0:05; and 0:1. The black dashed line is Eq. (2.10) and the

orange dashed line are linear guides to the eye.
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where (x0, y0) are the coordinates of the center of the vortex

with charge/vorticity q 2 Z and (xi, yi) the coordinates of the

position of hi. To find stable fixed points, the algorithm

reads:

1. Define a two-dimensional embedding of the network. Use

this to superimpose a regular lattice of coordinates on the

network. This is shown in Fig. 7(a).

2. Set (x0, y0) to a node of the regular lattice.

(a) Using Eq. (3.3), define a new initial state.

(b) Follow numerically Eq. (1.1) on the considered

meshed graph until a stable fixed point is reached.

(c) Each stable fixed point can be unambiguously iden-

tified by its winding vector. Use this to determine if

the fixed point just found is a new one. If yes, store

it.

3. Go back to step 2.

As the complex meshed network, we consider the UK high

voltage grid which is composed of 120 nodes and 165 lines. To

illustrate the algorithm just described, Figs. 7(b) and 7(c) show

an initial condition and the stable state toward which it dynami-

cally converges, respectively. Stable fixed points with many

vortices are obtained by setting jqj to large values, in our case

q 2 f�50;…; 50g. The dynamics will then split this initial vor-

tex into several vortices with smaller q values, located on dif-

ferent cycles of the network. This method can be used on any

network whether complex or regular. Time evolving Eq. (1.1)

on the UK grid with this initial condition returns only stable

fixed points. In this way, we found more than 4000 different

stable fixed points of Eq. (1.1) with Pi¼ 0.

B. Estimating the volume of basins of attraction

Having identified stable fixed points~h
ð~qÞ

of Eq. (1.1) on

the UK grid, we next follow the same procedure as in Sec.

II B and measure the volume of their basins of attraction.

We focus on stable fixed points with non-zero winding

number only on the five cycles in red in Fig. 8. We introduce

a shorthand notation with the winding numbers of these

cycles only

~qsh ¼ ðq1; q2; q3; q4; q5Þ: (3.4)

Taking each cycle independently, the maximum winding

numbers are qmax
1 ¼ 4; qmax

2 ¼ 2; qmax
3 ¼ 1; qmax

4 ¼ 2, and

qmax
5 ¼ 2.

In Fig. 9, we show as of Eq. (2.16) for s ¼ 0:5 and the

interquartile values for various stable fixed points identified

by their unique combination of winding numbers. For Pi¼ 0,

Eq. (1.1) is symmetric under hi ! �hi; 8i. This implies that

the volume of each basin of attraction is invariant under

~qG ! �~qG. This symmetry can be seen in Fig. 9(a) which is

symmetric under q1 ! �q1, as there is only one cycle with a

FIG. 7. (a) Geographic embedding of the UK high voltage grid with a square lattice. (b) Initial condition with a q¼ 1 vortex centered at the red dot. (c) Stable

fixed point towards which the initial state of panel (b) converges under the dynamics of Eq. (1.1) with Pi¼ 0, 8i.

FIG. 8. High voltage UK AC transmission grid used as a meshed network.

The five cycles we focus on are indicated in red. Note that cycle 4 is tra-

versed but not interrupted by an edge.
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non-zero winding number. Alternatively, ~qG ! �~qG inter-

changes panels (b) and (c) with q1 ! �q1. For fixed points

with more than one cycle carrying a non-zero winding num-

ber, there is no symmetry for q1 ! �q1 [see Figs. 9(b)–9(f)]

and the asymmetry is even more significant if the vortices

are close to each other [see Figs. 9(b) and 9(d)] because there

are few intermediate nodes which can screen the effect of

one vortex on the other, and so, the cycles interact strongly.

In Fig. 9(d), we did not find any fixed point with winding

vector ~qsh ¼ ð1; 0; 1; 0; 0Þ but we found one with

~qsh ¼ ð�1; 0; 1; 0; 0Þ. To understand this, we consider the sim-

plified situation of two connected cycles of sizes m and n, shar-

ing ‘ edges as depicted in Fig. 10. We consider the case when

qðnÞ ¼ 1 and qðmÞ ¼ 0. At a fixed point, Eq. (1.1) implies

sin ðDÞ ¼ sin ðD0Þ þ sin ðD00Þ; (3.5)

and Eq. (2.3) gives

ðm� ‘Þ � D00 � ‘ � D0 ¼ 2pqðmÞ ¼ 0 : (3.6)

From Ref. 36, if ‘ > 1, we have jDj; jD0j; jD00j � p=2.

Equations (3.5) and (3.6) imply that D > D0. Therefore, to

have qðnÞ ¼ 1, we must have D > 2p=n. Thus, if we add

edge-sharing cycles with zero winding number to a main

cycle with a non-zero winding number, some of the angle

differences must increase. When D is large, this can bring

D > p=2 where stability is lost.36 Adding a cycle carrying a

non-vanishing winding number makes the situation even

more critical. If we isolate cycles 1 and 3, which correspond

to Fig. 10 with n¼ 16, m¼ 7, and ‘ ¼ 2, an easy calculation

shows that there exist stable fixed points with ðqð16Þ; qð7ÞÞ ¼
ð1; 1Þ and ðqð16Þ; qð7ÞÞ ¼ ð1;�1Þ. However, when we

consider the complete network, only the solution with

ðqð16Þ; qð7ÞÞ ¼ ð1;�1Þ remains stable. This comes from the

fact that when both winding numbers have the same signs,

the angle differences on the shared edges benefit only to one

of the cycles. Then, the other cycle has to make a winding

number out of a reduced number of edges, implying larger

angle differences. Finally, when we take the complete net-

work, we put cycles next to the two initial ones and make the

angle differences even larger, until stability is lost. When the

winding numbers have opposite signs, both cycles benefit

from the angle differences on the shared edges, which leads

to smaller angle differences than in the previous case. This

explains why the fixed point ~qsh ¼ ð�1; 0; 1; 0; 0Þ is stable,

while ~qsh ¼ ð1; 0; 1; 0; 0Þ is not.

FIG. 9. Median (blue dots) and interquartiles (blue areas) of the values of a~q ;j obtained from 1000 random perturbations~�j of fixed points of Eq. (1.1) with

Pi¼ 0, 8i on the UK grid of Fig. 8 as a function of the winding number on cycle 1 (q1).

FIG. 10. Two cycles sharing ‘ edges. The top cycle has n nodes and the bot-

tom one m nodes. Angle differences are given by D, D0, and D00 for Eq. (1.1)

with equal frequencies.
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To conclude this section, we note that a meshed network

has an effect similar to the case considered in Sec. II D with

Pi 6¼ 0 in that, compared to the single-cycle network, (i)

there are fewer stable fixed points with large winding num-

bers and (ii) the volume of basins of attraction of fixed points

with small winding numbers seems to be unaffected.

IV. CONCLUSION

We have developed a numerical method to investigate the

volume of basins of attraction of fixed points in dynamical sys-

tems. Our method first locates the stable fixed points of the

dynamical system, using an algorithm based on the concept of

loop flows.30 Second, it perturbs them in random directions with

the increasing magnitude. The proportion of perturbed states

that converge back to the initial fixed point allows us to evaluate

the radius of the basin of attraction and then its volume.

We then used our method to investigate the Kuramoto

model on a cycle with identical frequencies. We obtained

that the volume of the basin of attraction is proportional to

ð1� 4q=nÞn, contrasting with the Gaussian distribution sug-

gested in Ref. 1. We then extended the application of our

method to the Kuramoto model on a cycle with non-identical

frequencies and to the Kuramoto model on meshed networks.

These two generalizations render the investigations of the

basins of attraction much less tractable, which imposes to

rely on numerics. We believe that our method significantly

speeds up these investigations.

Compared to other existing methods to investigate

basins of attraction, our method has three main advantages:

• It does not require a Lyapunov function of the dynamical

system considered,37,38 which is complicated to find in

general;
• It is not limited to quadratic or polynomial systems;39

• The investigation is guided by our knowledge of the sys-

tem and avoids to randomly pick initial conditions in the

state space.1,2

These advantages come with the drawback that we limit

our investigations to the volume of the basins of attraction

and have no indications about their shape. In particular, our

method is probably not adapted to the investigation of fractal

basins of attraction.40 We think that our method may be use-

ful in many other contexts including finding local energy

minima in planar spin glasses28 and disordered Josephson

junction arrays,29 among others.
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APPENDIX A: ANGLE VECTOR OF THE 1-SADDLE
POINTS

Here, we give the details of the computation of the com-

ponents of the angle vector ~uðq
0Þ 2 Hn�1 defined in Sec. II A.

The vector ~uðq
0Þ is the 1-saddle on a cycle of length n, with

winding number q0 and the only angle difference exceeding

p=2 located on the edge between vertices k – 1 and k. Its

components are given by

uðq
0Þ

i ¼ iD0 � Sk; if i < k;
ði� 2ÞD0 þ p� Sk; if i 	 k;

�
(A1)

where Sk is a constant angle shift guaranteeing that the sum

of components is zero

Sk :¼ n�1
Xk�1

j¼0

jD0 þ
Xn�1

j¼k

ðj� 2ÞD0 þ p
� �2

4
3
5 : (A2)

Some algebra gives

uðq
0Þ

i ¼p
2q0 �1

n�2
iþ�2n2kþ2nk�8q0k�n

2nðn�2Þ þT
ðkÞ
i

" #
; (A3)

where

T
ðkÞ
i ¼

10nq0 � n2

2nðn� 2Þ ; if i < k;

2nq0 þ n2

2nðn� 2Þ ; if i 	 k :

8>>>><
>>>>:

(A4)

APPENDIX B: MAXIMAL WINDING NUMBER ON A
CYCLE WITH RANDOM NATURAL FREQUENCIES

According to Ref. 30, the angle difference on the edge

between vertices k and kþ 1 is given by

Dk;kþ1 ¼ arcsinðeq þ P�k;kþ1=KÞ; (B1)

where P�k;kþ1 :¼
Pk

j¼1 Pj is a reference flow and eq is the

loop flow parameter determining the winding number of the

fixed point. For the sake of simplicity, we take K¼ 1. The

frequencies Pk are taken randomly and homogeneously in

the interval ½�b; b�. Their expectation and variance are

EðPkÞ ¼ 0 and varðPkÞ ¼ b2=3 : (B2)

Expectation and variance for P�k;kþ1 are then

EðP�k;kþ1Þ ¼ 0 and varðP�k;kþ1Þ ¼ k � b2=3 : (B3)

For sufficiently large n, we then expect typical excursions of

magnitude
ffiffiffi
k
p

b=
ffiffiffi
3
p

of P�k;kþ1 away from its average E ¼ 0.

It is known30 that on cycles with finite natural frequencies,

stable fixed points may have one angle difference slightly

larger than p=2 before losing stability at p=2þ d. As d is

always small, we will approximate the loss of stability to

occur when Dk;kþ1 ¼ p=2, i.e., when the argument of arcsine

in Eq. (B1) is equal to one. Finally, we approximate eq by its

value when b¼ 0

eq 
 sin ð2pq=nÞ : (B4)
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Putting everything together and taking k to be the aver-

age value of the indices, i.e., k ¼ n=2, Eq. (B1) gives

sin ð2pqmax=nÞ þ
ffiffiffi
n
p

b=
ffiffiffi
6
p
¼ 1; (B5)

which gives a maximal possible value of q before losing sta-

bility, with respect to b

qmaxðbÞ ¼ ð2pÞ�1n arcsin 1�
ffiffiffi
n
p

b=
ffiffiffi
6
p� 	

: (B6)

Simulated and estimated values of qmax are given in Table I

for various values of b. Even if the simplifications assumed

to obtain Eq. (B6) underestimate qmax, it is in fair agreement

with the numerically obtained values.

APPENDIX C: DISTANCE BETWEEN STABLE FIXED
POINTS AND SADDLE POINTS

We justify numerically the two statements of Sec. II A

that the 1-saddles are the closest unstable fixed points to the

stable fixed points and that stable fixed points and 1-saddles

are the closest if they have the same winding number. We

write ~uðq
0;‘Þ

i for the unstable fixed point with winding number

q0 and ‘ angle differences larger than p=2, where index i
labels the different fixed points with the same q0 and ‘.

Figure 11 shows that the 1-saddles are the closest unsta-

ble fixed points to stable fixed points. Figure 12 shows that

stable fixed points and 1-saddles are the closest if they have

the same winding number. As we remarked in Sec. II A, the

case of q¼ 0 is special because there are no unstable fixed

points ~uð0;‘ 6¼0Þ
i , with winding number zero.
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