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Abstract—Demand side management (DSM) is known for
generating synchronized behaviors of aggregated loads that can
lead to large power fluctuations [1]. In contrast to this well-
studied occurrence, we report here on the emergence of novel
synchronized behaviors of thermostatically-controlled electric
heating systems in buildings with good thermal insulation and
important solar radiation gains without DSM. To suppress the
resulting large load fluctuations on the distribution grid we
propose a centralized DSM algorithm that smoothens the total
load curve – including electric heating and all other domestic
appliances – of the cluster of dwellings it pilots. Setting up the
baseline load is based on weather forecasts for a receding time-
horizon covering the next 24 hours, while control actions are
based on a priority list which is constructed from the current
status of the dwellings. We show numerically that our DSM
control scheme can be generically used to modify load curves of
domestic households to achieve diverse goals such as minimizing
electricity costs, peak shaving and valley filling.

Keywords—Demand side management, thermostatically control-
lable loads, direct load control, residual load

I. Introduction.

Under the energy transition, the penetration of nondis-
patchable electricity productions is steadily increasing, which
results in large uncontrolled fluctuations in power generation.
Enforcing the balance between power demand and supply
becomes a challenge, which one standardly tries to meet with
electrical energy storage. An alternative to storage is demand
side management (DSM) where consumption is modified to
balance production [2]. In parallel to changes in production,
the energy transition further aims at making human activities
more energy-efficient. Buildings and households are one of
the main targets as they represent 30 to 40% of the total
energy consumed in western countries. Energy-efficiency is
improved via increased electrification of heating and cooling.
This generates new opportunities for DSM, because thermo-
statically controlled loads (TCL) such as electric heaters, AC
coolers and water boilers are characterized by a significant
usage flexibility [3]. Also, buildings have a sizeable thermal
inertia that allows to delay or anticipate electric heating
operation. Anticipated operation allows to store electric power
as thermal energy, while delayed operation releases part of
that thermal energy in the form of reduced power demand. A
variety of DSM schemes based on TCL have been proposed

for minimizing electricity costs [4], to provide active power
reserves [5], [6], [7] or ancillary services such as primary
voltage control [8] and primary frequency control [9], [10],
[1].

We have found that electric heating systems in energy-
efficient buildings submitted to homogeneous weather con-
ditions undergo a synchronization transition where a large
fraction of them switches on and off in unison – a fact that
has not been recognized so far. Fig. 1 shows the aggregated
electric heating load of a collection of 1000 energy-efficient
individual houses. Atmospheric conditions – shown in Panel
a) – are obtained from a historical time series corresponding
to sunny winter days in February in the city of Paris, France.
Details of the calculation are discussed below. During four
consecutive days the weather is clear, solar heat gains through
windows are important and contribute significantly to the
heating of the buildings. One sees in panel b) that this leads
to the switching off of most of the heating systems at around
noon. Solar gains next vanish as the sun sets, which leads to
the switching on of most heating systems. We show below
that this synchronous operation persists over periods of sunny
weather and is damped only after few consecutive days with
reduced solar radiation. It arises systematically in energy-
efficient buildings with large solar energy gains and good
thermal insulation, during sunny winter days. Fig. 1 b) further
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Fig. 1. Uncontrolled operation of 1000 aggregated households over one
typical winter week in Paris, France. a) External temperature and solar radia-
tion data. b) Full line: load of the electric heating systems (heat pumps with
coefficient of performance εCOP = 3). Dashed: total load, including heating
systems and domestic appliances. Vertical dotted lines indicate midnight.
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shows that oscillations clearly affect the total load, obtained
by summing the consumptions of the electric heating and
of the domestic appliances. Because they are dephased with
respect to solar radiation, these oscillations cannot be directly
compensated by local photovoltaic productions. One unwanted,
and so far overlooked consequence of the energy transition is
thus that increasing energy efficiency in buildings eventually
leads to a synchronous behavior of large sets of electric heating
systems that may hamper the operation of electric power
distribution systems.

In this manuscript, we propose a centralized DSM coor-
dination scheme for non-disruptive peak shaving and valley
filling of the load curve of aggregated households. By non-
disruptive, we mean with no significant impact on end-use
performance. Our method is based on a new concept which
we call residual consumption, and which in the present context
refers to the sum of all non-flexible consumptions (mostly
those of domestic appliances) from which non-flexible delocal-
ized productions (mostly photovoltaics) are subtracted. Clearly,
the residual consumption measures the amount of electricity
that the considered group of households has to request from
its electricity provider at a given time.

Our aim is therefore to predict moments of high and low
residual consumption in a time window spanning, for instance,
the next 24 hours. Then, in order to provide a service to the
distribution system operator (DSO) by smoothing the overall
load curve, the flexible electric heating systems are turned on
at times of lesser residual consumption and turned off when it
is larger. This is done by piloting the loads to try and match
a predicted optimal load curve.

The paper is organized as follows: Section II describes the
model used to account for heat exchanges and temperature
control in buildings. Section III presents the details of the
implementation of our control algorithm and compares it to
conventional thermostat regulation. The simulation parameters
and the results obtained are presented in Section IV. A brief
conclusion is given in Section V.

II. Electric HeatingModeling

We consider a standard model for thermostatically-
constrained electric heating [11], [12]. The state of each
building is described by a single average internal temperature
T whose time-evolution is governed by

C
dT
dt

= κ [Text(t) − T ] + Ph(t) + Prad(t) . (1)

The left-hand side gives the change in energy stored in the
building’s thermal mass. The constant C [Wh/K] is a thermal
inertia and depends on the volume and the material the
building is made of. The first term on the right-hand side
represents the heat exchange with the exterior. The effective
thermal conductivity κ [W/K] is determined by the building’s
insulation – a better insulation means a smaller κ. The terms
Ph [W] and Prad [W] in (1), are respectively the thermal power
of the heating system and the solar radiation gain. The latter is
obtained from meteorological solar radiation data, the window
surface S and a transmission coefficient g,

Prad(t) = prad(t) S g . (2)

The heating power provided by the heating system Ph(t)
is a discrete valued function, which either vanishes when the
heating is off or takes on its nominal value, Ph(t) = Pn

h, when
the heating is on. Focusing on energy-efficient buildings, the
heating systems we consider are heat pumps with a constant
coefficient of performance (COP) εCOP = 3. This is reasonable
for modern ground source heat pumps.

III. Thermostatic Control vs. Demand SideManagement.

A. Purely Thermostatic Control

A thermostat keeps a building’s temperature within a
certain range. In a conventional control scheme, heating is
turned on as soon as the internal temperature of the building
reaches a minimal temperature fixed by the user. It then keeps
operating until the temperature reaches a maximal setpoint,
at which time it is turned off. The building’s temperature
then falls down, leading to a new cycle. The minimal and
maximal temperatures define a comfort temperature interval
within which the building’s temperature should remain at all
times, T (t) ∈ [Tref −∆,Tref +∆], ∀t. It is defined by a reference
temperature Tref and a tolerance temperature interval 2∆.

Solar radiation significantly contributes to heating. In order
to maintain the temperature within the comfort bracket, it must
therefore be controlled, e.g. by shutting window blinds as soon
as the temperature exceeds a maximal set point. This strongly
suppresses the solar gains and is modeled in (2) by a reduction
of g.

B. DSM Coordination Algorithm

As an alternative to the thermostat regulation protocol just
outlined, we present a simple control scheme whose aim is
to shift the electric consumption required for heating when it
is more beneficial. Here ”beneficial” may mean ”financially
beneficial” (minimizing electricity costs), ”beneficial from
the point of view of the DSO” (providing ancillary service,
smoothing the load curve and so forth) or ”beneficial for
self-consumption” (allowing to consume locally as much as
possible of a local production).

The constraint of maintaining each house in the appropriate
temperature interval provides restricted flexibility to shift load.
In order to increase the overall flexibility we aggregate the
thermostatically controlled heating systems of a large district
and focus on their collective behavior. We first discretize time
into intervals ∆t (ti = i ∆t) and encode the information of
when it is desirable to consume in a predetermined target
consumption profile {Pi}, generated by a central controller.
This profile is chosen, for instance, according to one of the
specific objectives listed above. It is based on weather forecasts
for the solar radiation {Prad,i} and the outside temperature
{Text,i}, i = 1, . . .N, in a time-window corresponding to a
receding time-horizon N∆t. How to effectively construct {Pi}

is discussed below. Here we always consider a time-horizon
of 24 hours. At each time step, loads adapt their instantaneous
consumption, so that the aggregated consumption {Ei} mini-
mizes the deviations from {Pi} as measured by the variance

F ({Pi}, {Ei}) =

N∑
i=1

(Ei − Pi)2 . (3)



Minimizing F in Eq. (3) is easy if the total load is ideally
flexible, i.e. the total consumption can be distributed over any
time interval of the day, and if it can take any value between
zero and the maximum total power. Under this assumption,
{Ei} is allowed to vary freely, with the only constraint that the
total daily consumption Wtot is fixed,

N∑
i=1

Ei ∆t = Wtot . (4)

Then an analytical closed form solution to the minimization of
F under the constraint (4) is readily obtained using the method
of Lagrange multipliers,

Ẽi =
Wtot

N∆t
−

1
N

N∑
l=1

Pl + Pi . (5)

The existence of an analytical solution indicates that the
problem is well posed. However is Eq. (5) of much use, given
that individual TCLs are not ideally flexible ? We next argue
that the aggregation of sufficiently many TCLs increases load
flexibility overall and renders the problem closer to that of
ideally flexible loads. First, with M � 1 TCLs, one may
legitimately hope that at any time there are enough individual
loads ready to turn on or off – the aggregated load can be
increased or decreased at any time to adapt to DSM goals.
Second, the aggregated consumption increases roughly in steps
of Pn

tot/M, the aggregated nominal power Pn
tot divided by the

number M of individual loads, so that the relative power
consumption becomes effectively a continuous variable for
M � 1. This is why we make use of the enhanced overall
flexibility brought about by aggregation. We stress however,
that in the following, individual TCLs are never assumed fully
flexible.

The control algorithm works as follows. At every time step,
the central controller estimates the thermal energy consump-
tion Wtot of the district for the receding time window covering
the next 24 hours. This is made based on weather (temperature
and solar radiation) forecasts and on the current energy content
of the buildings. Let i0 denote the considered time step. From
(1), the estimate for Wtot at i0 is obtained as

Wtot,i0 =
∑

k

i0+N∑
i=i0

[
κ(k)

(
−Text,i + T (k)

ref

)
− prad,i S (k) g

]
∆t

+
∑

k

C(k)
[
T (k)

ref − T (k)
i0

]
,

(6)

where the sum over k runs over the whole district, with
quantities corresponding to individual dwellings labeled by
superscripts (k). The first term on the right-hand side of (6)
corresponds to the energy needed to maintain every building
at its reference temperature, given the external temperature
forecast, minus the energy provided by the forecasted solar
radiation. The second term additionally takes into account
the excess or deficit in stored thermal energy at the time of
the estimate, compared to the energy stored at the reference
temperature.

The total electric consumption of the neighborhood is the
sum of a flexible and a non-flexible contribution. The flexible
consumption can be shifted in time, at least partially. The
non-flexible consumption corresponds to all consumptions that

either cannot be shifted, or whose flexibility is not used.
In our case, the flexible consumption is that of the electric
heating system, while the non-flexible consumption is the sum
of the consumptions of all other domestic appliances. The
district’s need for electric power is further quantified by the
residual consumption Ri, which, as discussed above, is the sum
of all non-flexible consumptions minus all non-flexible local
productions. Our goal is to construct a coordination algorithm
shifting the flexible consumption in such a way that the sum
of the residual consumption and of the flexible consumption
is smoother than without control. Thus, we want the electric
heating system to function mostly in the valleys of the residual
consumption. To achieve this, we chose the target consumption
profile [the Pi’s in (3)], as

Pi =
Wtot

N ∆t
− εCOP Ri . (7)

From (5) the optimal thermal consumption profile is given by

Ẽi0+i =

Wtot,i0

N ∆t
+

1
N

N∑
l=1

εCOP Ri0+l

 − εCOP Ri0+i . (8)

Note that in (7) and (8) the residual consumption is an electric
power and therefore it must be multiplied by the COP to
obtain the corresponding thermal power. Obviously, the total
electric consumption Ẽi0+i/εCOP+Ri0+i gives a smoothly varying
function of time. It is given by the sum of the forecasted
heating energy required for the next 24h plus the residual
consumption for the next 24h, distributed uniformly over the
N time intervals.

With estimates for Wtot and {Ri} in hand, the central
controller generates the optimal consumption profile {Ẽi} in
the receding time window i = i0, . . . i0 + N, according to
(8). The controller’s task is then to adapt the district’s actual
load to {Ẽi}, under the end-use constraint that each bulding’s
inside temperature lies at any time within the comfort interval,
T (k)

i ∈ [T (k)
ref − ∆(k),T (k)

ref + ∆(k)]. In our approach, this end-use
constraint has priority over everything else. The procedure goes
as follows. The central controller receives from each building:
i) the temperature T (k)

i0
and the comfort temperature-interval,

and ii) the nominal power Pn,(k)
h and the state s(k)

i0
of each

heating system. A priority list is then constructed by ranking
the houses according to a priority index

η(k)
i0
≡

T (k)
i0
−

(
T (k)

ref,i0
− ∆(k)

)
2 ∆(k) ∈ [0, 1] , (9)

encoding how close the kth house is to the minimal (η(k)
i0

small)
or to the maximal temperature (η(k)

i0
closer to one).

The controller next computes the district’s instantaneous
consumption,

Einst
i0 =

∑
k

Pn,(k)
h s(k)

i0
, (10)

which is the heating load that the district would have with
purely thermostatic control. The controller then compares Einst

i
to Ẽi. If Einst

i < Ẽi, it instructs the coldest buildings, starting
with those with lowest η(k)

i0
, to turn on their heating systems

until the actual load reaches Ẽi. If Einst
i > Ẽi on the other

hand, it instructs the warmest buildings, starting with those
with highest η(k)

i0
, to turn off their heating system. Implemented



Fig. 2. Schematic representation of the control loop.

blindly, this procedure could lead either to violations of the
temperature constraint T (k)

i ∈ [T (k)
ref − ∆(k),T (k)

ref + ∆(k)] or to fre-
quent switchings of the heating systems (the number of which
determines the lifetime of a heat pump) or both. To avoid that,
the heating devices react to off (resp. on) commands only if the
building’s temperatures belong to T ∈ [Tref − 0.9 ∆,Tref + ∆]
(resp. T ∈ [Tref − ∆,Tref + 0.9 ∆]) – when temperatures are
outside these intervals, thermostat rules discussed in Sec. III-A
apply. Thus our control algorithm accounts both for the “will-
ingness” [quantified in terms of the priority index (9)] and the
“availability” (corresponding to which pumps are available to
change their operating state) of the TCLs to participate in the
DSM coordination.

Once the switching commands are sent, the controller lets
the district evolve according to (1) during one time step ∆t.
The new building temperatures are then transmitted back to the
central controller, which closes the control loop [see Fig. 2].
The next step is then initiated with a new estimate of Wtot
and of {Ri} for the next 24h, a new priority list is constructed
and the procedure just outlined is implemented again. In our
receding horizon approach, new estimates of Wtot and {Ri} and
a new optimization of the consumption profile are performed
at each time step. This allows to correct forecast errors rapidly.

IV. Simulation Parameters and Results.

A. Building parameters

In all our simulations, we consider a district consisting
of 1000 individual houses, modeled by 1000 copies of (1)
discretized in time steps ∆t = 1 min. The parameters we
use in these differential equations are different for each house
and distributed as follows. The thermal capacity and thermal
conductivity are uniformly distributed in the intervals

C ∈ [13, 27] kWh/K , κ ∈ [200, 400] W/K , (11)

which are a common ranges for detached European houses
with a floor surface ranging from 100 to 200 m2. These thermal
conductivity values include both recent energy efficient houses
(κ ∈ [200, 300] W/K) as well as older houses as commonly
built in the early 90’s (κ ∈ [300, 400] W/K) [7].

We calibrate the nominal heating power of each heat pump
as Pn

h = κ · 30 K , so that the pumps can provide sufficient
heating power to maintain the houses at T = 20◦C against
an external temperature of Text = −10◦C. For this choice, and
given (11), the nominal thermal powers of the heating systems
are uniformly distributed in the interval

Pn
h ∈ [6, 12] kW . (12)

The houses in our district may have different orientations
and are thus subject to different solar gains. This is modeled

by distributing their effective south facing window surface
uniformly in the interval

S ∈ [5, 15] m2 . (13)

Furthermore, the transmission coefficient of the windows is
either g = 0.6 or g = 0.12 when the blinds are up or
down respectively. Blinds in different dwellings are closed
at the setpoint T (k)

blinds, uniformly distributed in the interval
[T (k)

ref + ∆(k)/2,T (k)
ref + ∆(k)], and are opened back at T (k)

ref . The
comfort interval parameters Tref and ∆ reflect end-user habits
and preferences. They are uniformly distributed as

Tref ∈ [21, 23] ◦C , ∆ = 1.5 ◦C . (14)

B. Non-flexible domestic appliances

The electrical load of the district we consider is the sum
of the consumption of domestic appliances and of the electric
heating systems. DSM coordinates only the latter as domestic
appliances are considered non-flexible in this work. We gen-
erate load profiles from domestic appliances with the software
BEHAVSIM which is based on recorded consumptions of
different household appliances [13]. The resulting load for
all domestic appliances in our district is shown in Fig. 3 a).
The non-flexible load displays a characteristic double peak
structure with peaks at noon and in the early evening. A smaller
peak is also present in the early morning of working weekdays.
There is a ∼ 1.3 kW daily excursion per house between the
peak consumption of 1.5 kW and the base load of 0.2 kW.

In investigations of districts with their own, local PV
production, we try to additionally consume locally as much
of the PV production as possible. The quantity of interest in
this case is the residual consumption. For a district with 1000
houses and 104 m2 of solar panels it is shown in Fig. 5 a).
Compared to the consumption of domestic appliances shown
in Fig. 3 a) we see that, on sunny days, the PV production
erases the noon consumption peak. The residual consumption
even becomes negative at times of relatively low consumption
and large PV production, indicating a need to either store or
export part of the local PV production.

C. Meteorological data

Time series for the external temperature Text(t) and solar
radiation data prad(t) are obtained from the software Me-
teonorm, which gives either true (recorded) or interpolated
data1. Below, we discuss sequentially different situations of
typical winter conditions in Paris, France, both with and
without PV production that needs to be self-consumed.

D. District without local production

For a district without local production, the residual con-
sumption is given by the load of the domestic appliances. An
example of such residual consumption is shown in Fig. 3 a).
It corresponds to 1000 individual houses in January in Paris,
France, for which temperature and solar radiation time series
are shown in Fig. 3 b). Without PV production, the solar
radiation influences our results only via the radiation gains
defined in (1) and (2).

1For more details we refer the reader to meteonorm.com.
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Fig. 3. Time series for electrical consumptions and weather conditions for
two January weeks in Paris, France. Consumptions are aggregated for a district
of 1000 houses and vertical dotted lines correspond to midnight. a) Residual
load from all domestic appliances (there is no PV production). b) External
temperature and solar radiation data. c) Total electrical consumption of the
heating systems. d) Total load given by the sum of the heating consumption
and of the residual load.

Results for the electric heating and total loads, with and
without DSM coordination are shown in panels c) and d) of
Fig. 3. It is clearly seen in Fig. 3 c) that, without DSM coor-
dination, the heat pumps tend to synchronize and the heating
consumption correlates with the external weather conditions.
The trend is especially visible on clear, cold days, when solar
radiation provides enough heating power [the last term in (1)]
so that the need for electric heating is lower from midday until
the late afternoon. The temperature drops fast, however, when
the sun sets, at which time a large fraction of heat pumps
switches on and, because the night is cold, they stay on until
the next day. If that day is also clear, a new cycle starts and
the pumps are almost perfectly synchronized. This behavior is
observed almost throughout the month (though only results for
the first two weeks are reported here), with fluctuations being
damped, but not suppressed, on cloudy days with little or no
solar radiation.

Numerical simulations performed using different weather
conditions (not shown) corroborate our finding that, without
control, large load fluctuations already emerge after a single
sunny day and reach their maximal amplitude of 1.5-2.0
kW/house after two consecutive clear days. We conclude that
the onset of synchronization of heat pumps is fast in energy-
efficient buildings, and mostly depends on solar radiation,
external temperature being a subdominant factor.

The synchronization of the heat pumps is also reflected
in the total load shown in Fig. 3 d), which exhibits daily
fluctuations reaching 2 MW for our set of 1000 houses.
Striking in Fig. 3 d) is that the total load on the distribution
network exhibits sharp ramp-down of the order of 1 MW in
just two hours or less during the sunniest days of the month.

Such abrupt variations need to be smoothed to avoid potential
service disruptions. Achieving this is a priori a hard task: it
requires to operate a significant fraction of heat pumps at times
of higher solar gains and to turn them off during cold night
hours.

Fig. 3 c) and d) show how the DSM coordination algorithm
proposed manages to smooth the total load of our district. The
heating consumption in Fig. 3 c) is clearly anticorrelated with
the load from the domestic appliances. The result is that the
total load, shown in Fig. 3 d), becomes remarkably smooth.
With DSM, the amplitude of daily fluctuations is suppressed
by a factor five or more compared to thermostatic control.
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Fig. 4. Increase in the number of heat pump switchings resulting from
DSM, a) no PV production, b) 10 m2/house of PV panels. Horizontal axis:
average daily number of heat pump switchings without DSM. Vertical axis:
multiplicative factor of the number of switchings with DSM.

Any DSM protocol such as ours should have almost no neg-
ative impact on end-use performance. For the results presented
in Fig. 3 c) and d), we have that T (k)

i ∈ [T (k)
ref−∆(k),T (k)

ref +∆(k)] for
all houses at any time of the simulation. Additionally, we find
that the total consumption with DSM is few percent smaller
than without DSM. Finally, Fig. 4 a) shows that, with DSM,
the number of switchings of the heat pumps increases only by
a factor of 1.6 to 2.4, which is tolerable.

For other weather conditions (not shown), we find that our
DSM protocol performs as well as it does for Paris. It is non-
disruptive in the sense discussed above, and it reduces the
daily excursions of the total load below 0.25 MW for 1000
buildings.

E. Non-flexible domestic appliances and local PV production

We next consider a district with a local PV production
corresponding to a total of 104 m2 of PV panels for our
1000 houses. We generate the PV production time series by
multiplying the solar radiation data on a south facing, 40◦
degrees inclined surface by the total surface of PV panels,
times an efficiency coefficient of 15%. Our goal is now not only
to smoothen the load curve but to do so while simultaneously
consuming as much as possible of the PV production. This is
not a trivial task – solar panels produce the most when solar
gains are maximal, i.e. when electric heating systems would
rather switch off. We show that our DSM protocol can still
achieve this goal, at least for not too large PV penetration.

The residual load, shown in Fig. 5 a), is now given by the
domestic appliances’ consumption minus the PV production.
Meteorological conditions are the same as in the previous
example [see Fig. 3 b)]. The aggregated heating consumption
of the 1000 heat pumps is presented in Fig. 5 b) for both
coordinated and uncoordinated operation. In the uncoordinated
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Fig. 5. Time series for electrical consumptions for two January weeks in
Paris, France. Consumptions are aggregated for a district of 1000 houses and
vertical dotted lines correspond to midnight. a) Residual load from all domestic
appliances minus a local PV production from 104 m2 of solar panels. b) Total
electrical consumption of the heating systems. c) Total load given by the sum
of the heating consumption and of the residual load.

case the results are the same as those presented in Fig. 3 c) –
they do not depend on PV production. In contrast, the heating
consumption in the coordinated case is now higher at noon, to
compensate the PV production. Fig. 5 c) finally presents the
total load on the distribution grid, which is about as smooth
as without PV production. We conclude that our algorithm
is able to smooth the load of a relatively large district while
simultaneously absorbing a local PV production, even with
large solar radiation power – despite the fact that the latter
simultaneously reduces the need for heating and increases PV
production.

We note that, with PV production, our coordination pro-
tocol still meets our requirement of being non-disruptive: we
observe no violation of the comfort temperature interval, nor
a dramatic increase in the number of heat pump switches
[see Fig. 4 b)]. We even find a small, though not statistically
significant, reduction of the total consumption with DSM
coordination compared to thermostatic control.

V. Conclusion.

Heat pumps operated by purely thermostatic control in
energy-efficient buildings quickly synchronize during clear
winter days due to strong solar heat gains. We found that
typically 60% of the heating systems turn on and off simul-
taneously, which leads to large load modulations and sharp
ramp-ups and -downs of more than 1 MW in just two hours
for 1000 houses. This undesirable synchronization is likely to
become more pronounced as buildings become more and more
energy efficient.

We have constructed a non-disruptive DSM algorithm that
strongly suppresses these large load fluctuations and demon-
strated its load-shifting potential over long periods of time.
We furthermore showed that the same control scheme is able
to additionally absorb a local PV production, even though the
latter is produced at the same time solar gains are maximal

and heat pumps have a natural tendency to switch off. We note
that our algorithm is robust in that it works well in different
geographical regions, regardless of meteorological conditions.

Our proof-of-principle algorithm relies on a two-way com-
munication protocol between a central controller and local
load controllers. We see this as the main shortcoming in
our approach and future works should attempt to adapt this
idealized control scheme to one-way communication.
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