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Due to the potential for cascading failures 
a clever cyber-attack can be amplified by the grid operators



San Diego Blackout, Sept. 2011 – Human Error

“Ideally” a cyber attack would cause the operators to make a human error
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Simplistic view of a Power Grids
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PMU: Phasor Measurement Unit
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Physical Attack in San Jose (Apr. 2014)
“A sniper attack in April 2014 that knocked out an electrical substation near San Jose, Calif., has 
raised fears that the country's power grid is vulnerable to terrorism. ” –The Wall Street Journal



Cyber Attack in Ukraine (Dec. 2015)

Unplugged 225,000 people from the Ukrainian electricity grid



Cyber Attack in Ukraine (Dec. 2015)

Unplugged 225,000 people from the Ukrainian electricity grid



Transmission Grid - State Recovery after a Cyber-Physical Attack
§ State recovery under the DC model

§ State recovery in the presence of measurement noise and uncertainty

§ State recovery under the AC model

§ Attack identification when the affected area is unknown

[1] Saleh Soltan, Mihalis Yannakakis, Gil Zussman, “REACT to Cyber Attacks on Power Grids,” IEEE Transactions on Network Science and 
Engineering, vol. 6, no. 3, pp. 459–473, Sept. 2019. 

[2] Saleh Soltan, Mihalis Yannakakis, Gil Zussman,  “EXPOSE the Line Failures following a Cyber-Physical Attack on the Power Grid ,” IEEE 
Transactions on Control of Network Systems, vol. 6, no. 1, pp. 451–461, Mar. 2019. 

[3] Saleh Soltan and Gil Zussman, “Power Grid State Estimation after a Cyber-Physical Attack under the AC Power Flow Model,” Proc. IEEE PES-
GM’17, 2017.

[4] Saleh Soltan, Mihalis Yannakakis, Gil Zussman, “Power grid state estimation following a joint cyber and physical attack,” IEEE Transactions on 
Control of Network Systems, vol. 5, no. 1, pp. 499–512, Mar. 2018.



Detect the line failures as well as the attacked area 𝐻 after a cyber-physical attack

Attack Identification when the Affected Area is Unknown

[1] S. Soltan, M. Yannakakis, and G. Zussman, “REACT to cyber attacks on power grids,” IEEE Transactions on Network Science and Engineering, 
vol. 6, no. 3, pp. 459–473, Sept. 2019. 



Physical attack - some lines in the area fail

Cyber attack:
◦ Data distortion
◦ Data Replay

𝜃⋆ is the observed phase angles vector after the attack which is different from the actual 𝜃′

NP-Hard to detect the set of line failures (even if the attack area is known and even under the DC 
approximation)

Approximate solutions

Location Unknown - Cyber Attacks



Approximately detect the attacked area in 3 steps

Identify line failures with some confidence 

Example



Performance - Small Area (15 nodes)

100 1,2,3-line failure samples



Data Distortion vs. Data Replay
Difficulty in detecting the attacked area after a data replay attack



From Transmission to Distribution

Most of the research in this field has focused on the Transmission grid

The Distribution grid, on the other hand, suffers from under-observability even when not attacked
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External data, 
e.g. weather data

Sky imager
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Project objectives

Layer 1: Security Situational Awareness

1. Assess and optimize resiliency against physical threats

2. Detect and localize cyber attacks

Layer 2: Distributed Microgrid Coordination

3. Continuity of service after attack on control center or 
communication system

Layer 3: Autonomous Microgrid Restoration

4. Fast restoration after blackouts

5. Robust parallel grid-forming inverters

MGMS: Microgrid Management System; MGC: Microgrid Controller; RIAPS: Resilient Information Architecture Platform for the Smart Grid

Loss of MGMS
Loss of communication

Blackout

Global restoration

Local restoration

Communication line Power line

AURORA (AUtonomous and Resilient Operation of energy systems with RenewaAbles), PI: Ulrich Muenz (Siemens) 
Develop and demonstrate a 3-layer protection scheme against cyber and physical threats



§ Distribution grid
§ Natural fluctuations
§ Limited observability
§ Sensors are becoming more pervasive but still “fragile”
§ DC approximation does not hold

§ Given:
§ Historical data on voltage and power
§ Partial real-time power measurements (e.g., due to cyber attacks)

§ Power-flow equations may be under-determined 
§ Model-driven approach may fail

§ Objective: prediction of voltages

§ Method: Incorporate the physical model of the power-flow 
equations into the Deep Learning training
§ Hybrid model and data driven approach

Distribution Grid – Partial Observability



Objective and Assumptions

Goal:
§ Accurate estimation of the distribution grid state

Assumptions:
§ The distribution grid is affected, and 

becomes under-observable
§ The Power-Flow Equations cannot be solved

Method:

Evaluation: numerical
18

Deep Learning

Power-flow

Historical data:
{ "𝑣 𝜏 , �̂� 𝜏 }!"#$%$&!"#$&

Real-time measurements:
�̂�' 𝑡 for some j

Predict:
"𝑣( 𝑡 for all i



Related Work

! Distribution system state estimation [Chen et al. 2019], [Primadianto and Lu, 
2017]

! Matrix completion techniques [Donti et al., 2018], [Genes et al., 2019], 
[Miao et al., 2019]

! Machine learning tools for distribution system state estimation [Bhela et al., 
2018], [Jiang and Zhang, 2016]

! Physics-informed deep learning methods [Zamzam and Sidiropoulos, 2019], 
[Hu et al., 2020], [Singh et al., 2020], [Zhang et al., 2019]

! Hybrid machine learning models in other domains [Zhu et al., 2020]



Sudden Failure State Estimation (SFSE)

Problem formulation

t-T-1,  … t-1,    t

Fully Observable:
2Nmeasurements/time step

?

time

<N
Meas

# measurements

𝒪 𝑁! 𝑡 , 𝑁" 𝑡 < 50%

For different levels of Observability at time (t), defined as                         for a distribution network of N nodes:

The Power-Flow Eqautions cannot be directly solved if the observability level drops below 50%

à defines a low-observable, under-determined scenario
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Power Flow-informed Deep Neural Network (DNN)

22
Ostrometzky, Jonatan, Konstantin Berestizshevsky, Andrey Bernstein, and Gil Zussman. "Physics-Informed Deep Neural Network Method for Limited 
Observability State Estimation." arXiv preprint arXiv:1910.06401 (2019).
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Power Flow-informed Deep Neural Network (DNN)
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N – The number of nodes
Ns – The number of nodes that report the complex 
power values
Nv – The number of nodes that report the complex 
voltage values
Inputs: 
N time-series [t-T,…t-1] of the complex voltage values 
N time-series [t-T,…t-1] of the complex power values
Ns < N complex power values (for time index t)
Nv < N complex power values (for time index t)

Power Flow-informed Deep Neural Network (DNN)
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The Loss function acts as a regularizer for the DNN, 
incorporating the AC Power-Flow Equations
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Power Flow-informed Deep Neural Network (DNN)

N – The number of nodes
Ns – The number of nodes that report the complex 
power values
Nv – The number of nodes that report the complex 
voltage values
Inputs: 
N time-series [t-T,…t-1] of the complex voltage values 
N time-series [t-T,…t-1] of the complex power values
Ns < N complex power values (for time index t)
Nv < N complex power values (for time index t)
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Our Loss function acts as a regularizer for the DNN, 
incorporating the AC Power-Flow Equations

MSE Term

26

Power Flow-informed Deep Neural Network (DNN)



27

Our Loss function acts as a regularizer for the DNN, 
incorporating the AC Power-Flow Equations

0

+ Penalize infeasible power flow

27

MSE Term

Power Flow-informed Deep Neural Network (DNN)



Evaluation
Based on the IEEE-
37 bus feeder
~50% of the buses 
inject power



! NREL Provided us with real distribution grid data:
• One photovoltaic panel production (active power) – sampling rate of 1 Hz
• Eight real usage of houses (active power) – sampling rate of 1 Hz

! Processing
• Randomly allocated to buses
• Generated corresponding reactive power
• Smoothed the data, using a moving-average 60-second window, and down-sampled
• Used MATPOWER to solve the Power Flow Equations (AC model) and obtain voltages

! Overall, acquired a full week of data (~10,080 time-steps per time-series)
• 90% of the T-long sequences used for training
• The rest used for validation

29

Available Data



! Arbitrarily assigned different nodes 
with data based on the real-world 
measurements provided by NREL

30

Available Data - Power

IEEE 37-node test feeder distribution grid
represents a generator-node
represents a load-node 



! Used MATPOWER to calculate the time-series of the complex voltages, which satisfies the 
Power-Flow Equations, to complete the dataset needed for training and validation

33

Available Data
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Training

• We trained the setup for different levels of observability: 49%, 39%, 25%, 17%, and 8%

• This mimics actual attacks/malfunctions

• 90% used for training
• 10% used for validation

Example of an observability value of 39%:
• 0/36 voltages are known at time (t),
• 28/36 power-values are known at time (t).

𝒪 𝑁! 𝑡 , 𝑁" 𝑡 =
𝑁! 𝑡 + 𝑁" 𝑡

2𝑁 =
28 + 0
36 / 2 = 0.39

* We use 36 instead of 37 nodes since one of the nodes is a behind a transformator.
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Numerical Results – Comparison with WLS and Sensitivity to T

The magnitude and the angle of the normalized Mean-Square-Error for 
the complex voltages time-series, 

compared with the Weighted Least Square Estimation

Physics-Informed Deep Neural Network Method for Limited Observability State Estimation Performance 2020, November 2-6, 2020, Milan, Italy

(a) Magnitude{E (C )} (b) Angle{E (C )}

Figure 8: MSE for the IEEE-37 Node test feeder voltages
magnitude and angle estimation under partial observability.
This plot compares DNN models trained with di�erent de-
gree of PFE regularization.

(a) Magnitude{E (C )} (b) Angle{E (C )}

Figure 9: MSE for the IEEE-37 Node test feeder voltages mag-
nitude and angle estimation under partial observability -
WLS estimation and persistent guess. The DNN results (for
_ = 2) are plotted for comparison.

3.4.1 Impact of the selected value of _. A DNN trained with PFE
regularization (_ > 0) showed, in general, lower MSE when com-
pared with a non-regularized DNN (_ = 0). This phenomenon
is especially evident in the angle estimation (see Fig. 9). Indeed,
the improvement is less pronounced for the magnitude estimation.
However, this can be explained by the fact that the MSE achieved
by all DNN’s (including _ = 0) is extremely small, and thus, the
overall margin of improvement is narrower.

3.4.2 Influence of the size of ) . Fig. 10 presents a comparison
between ) = 5 and ) = 50 for selected permutations. As can be
seen, the di�erences are negligible. Thus, it can be concluded that
the amount of information from historic data (with respect to future
voltage-phasor estimation) is negligible beyond at least a 5-minute
window () = 5).

It is worth noting, however, that as the number of observable
buses increases, the overallMSE values also increase. This is counter-
intuitive, and indeed requires further study. We suspect that due to
the fact that we use real-world data, it might be that the time-series
obtained include noise from various sources, which can cause some
mis-modelling. Nonetheless, the DNNs with physics-informed reg-
ularization (_ > 0) present consistently higher estimation accuracy.

(a) Magnitude{E} (b) Angle{E}

Figure 10: Impact of ) . The Y axis shows the MSE for the
IEEE-37 Node test feeder voltages magnitude and angle es-
timation under partial observability. The plot compares the
estimation MSE of DNN to WLS and persistent estimators.
All the estimators were checked both with ) 2 {5, 50}.

4 CONCLUSION AND DISCUSSION
In this paper, we presented a new approach of state-estimation in
the distribution grids during sudden failures or attacks. The method
capitalizes on a physics-informed DNN training algorithm that is
able to take advantage of the grid physical information. We demon-
strated the performance of the proposed method using an experi-
mental setup which simulates a case of a sudden failure and loss of
observability. We showed that our DNN-based estimation achieves
a higher accuracy of the voltage-phasors estimation when com-
pared with the widely used WLS-based estimation. Furthermore,
the main contribution of incorporating the PFE regularization into
the DNN model was shown to be in the voltage-angles estimation.
The latter is typically overlooked in standard DSSE algorithms, but
will become an important factor in modern and future low-inertia
distribution grids.

Some ideas for further research follow: 1) Although our PFE-
induced training of a DNN showed higher state estimation accura-
cies, we did not perform a full analysis study regarding the optimal
value of _ parameter for a given observability value (OC ). The next
step of our work is to establish a set of optimal _ values. 2) Further-
more, in this paper we compared our physics-informed DNN output
estimation accuracy to the standard WLS methodology which uses
historic data in order to establish the di�erent weighting of the
missing samples. However, new approaches for the missing PMU
data recovery [19] may be used in order to enhance both the WLS
and our proposed DNN, which could improve the overall estima-
tion accuracy, and should be investigated in future work. 3) In
this research, we used the DNN model with real numbers. As the
complex-number capable DNNs are currently being studied [31], it
is worth investigating the DSSE problem based on a DNN over the
C �eld. 4) Lastly, it is important to develop a uni�ed DNN model
that will be capable of dealing with multiple levels of observability
without requiring dedicated training sessions.
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Numerical Results – Sensitivity to l

MSE 
term

Power-flow 
Equations 

regularizer term The magnitude and the angle of the normalized 
Mean-Square-Error for the complex voltages time-series 



Ongoing Work – Applying the Method to a Sub-transmission 
Network within the DOE AURORA Project
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We aggregate loops and multiple HV-infeed stations in high voltage 
networks in order to reuse the previously developed BFS, DFS 
based physical security analysis algorithms

Original Circuit Reduced Circuit



Summary and Ongoing Work
§ Expanded previous work on transmission systems and static model to distribution system with 

streaming data
§ Developed a hybrid model and data driven approach to recover missing data in distribution 

grid 
§ Has a “black box” nature but takes the power flow equations and system parameters 

into account
§ Showed that it works well with real-world data 
§ Future/ongoing work:

§ Improve the DNN to accommodate a general training set, rather than a training set per scenario
§ Evaluate the method with the Holly Cross Energy distribution grid as part of the AURORA project
§ Extend to false data injection
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