Coherence and Concentration in Tightly-Connected Networks

Enrique Mallada

Data-based Diagnosis of Networked Dynamical Systems
CCS 2021 Satellite Symposium
November 3, 2021

Acknowledgements

Hancheng Min JOHNS HOPKINS
UNIVERSITY

Yan Jiang WASHINGTON

Petr Vorobev Skoltech Skolkovo Institute of Science and Technology

Andrey Bernstein Fernando Paganini

UNIVERSIDAD ORT Uruguay

Coherence in Power Networks

- Studied since the 70s
 - Podmore, Price, Chow, Kokotovic, Verghese, Pai, Schweppe,...
- Enables aggregation/model reduction
 - Speed up transient stability analysis
- Many important questions
 - How to identify coherent modes?
 - How to accurately reduce them?
 - What is the cause?
- Many approaches
 - Timescale separations (Chow, Kokotovic,)
 - Krylov subspaces (Chaniotis, Pai '01)
 - Balanced truncation (Liu et al '09)
 - Selective Modal Analysis (Perez-Arriaga, Verghese, Schweppe '82)

This talk

Goals:

- 1. Characterize the coherence response from a frequency domain perspective
- 2. Leverage the coherence response to obtain accurate reduced order models

Coherence and Concentration in Tightly-Connected Networks

Hancheng Min and Enrique Mallada

ArXiv preprint: arXiv:2101.00981

Accurate Reduced-Order Models for Heterogeneous Coherent Generators

Hancheng Min, Fernando Paganini, and Enrique Mallada

IEEE Control Systems Letters, 2021

Storage-Based Frequency Shaping Control

Yan Jiang, Eliza Cohn, Petr Vorobev, Member, IEEE, and Enrique Mallada, Senior Member, IEEE

[TPS 21]

IEEE Transactions on Power Systems, 2021

Grid-forming frequency shaping control

Yan Jiang¹, Andrey Bernstein², Petr Vorobev³, and Enrique Mallada¹

IEEE Control Systems Letters, 2021

[L-CSS 21]

Coherence and Concentration in Tightly-Connected Networks

Hancheng Min and Enrique Mallada

ArXiv preprint: arXiv:2101.00981

Accurate Reduced-Order Models for Heterogeneous Coherent Generators

Hancheng Min, Fernando Paganini, and Enrique Mallada

IEEE Control Systems Letters, 2021

Storage-Based Frequency Shaping Control

Yan Jiang, Eliza Cohn, Petr Vorobev, Member, IEEE, and Enrique Mallada, Senior Member, IEEE

[TPS 21]

IEEE Transactions on Power Systems, 2021

Grid-forming frequency shaping control

Yan Jiang¹, Andrey Bernstein², Petr Vorobev³, and Enrique Mallada¹

IEEE Control Systems Letters, 2021

[L-CSS 21]

Outline

- Characterization of Coherent Dynamics [Min, M '21]
- Reduced-Order Model of Coherent Response [Min, Paganini, M '21]

Coherence and Concentration in Tightly-Connected Networks

Hancheng Min and Enrique Mallada

ArXiv preprint: arXiv:2101.00981

Coherence in networked dynamical systems

Block Diagram:

Node dynamics: $g_i(s), i = 1, 2, \dots, n$

Symmetric Real Network Laplacian: L

$$L = V\Lambda V^T, \ V = [1/\sqrt{n}, V_{\perp}]$$

 $\Lambda = \text{diag}\{0, \lambda_2(L), \dots, \lambda_n(L)\}$

Coupling dynamics: f(s)

Examples:

Consensus Networks:

$$g_i(s) = \frac{1}{s}$$
$$f(s) = 1$$

Power Networks (2nd order generator):

$$g_i(s) = \frac{1}{m_i s + d_i + \frac{r_i^{-1}}{\tau_i s + 1}}$$
$$f(s) = \frac{1}{s}$$

Coherence in networked dynamical systems

Block Diagram:

- 1. Coherence can be understood as a **low rank** property the **closed-loop transfer matrix**
- 2. It emerges as the **effective algebraic connectivity** increases
- 3. The coherent dynamics is given by the harmonic mean of nodal dynamics

$$\bar{g}(s) = \left(\frac{1}{n} \sum_{i=1}^{n} g_i^{-1}(s)\right)^{-1}$$

Assume homogeneity: $g_i(s) = g(s), i = 1, \dots, n$

7

Eigendecomposition $L = V\Lambda V^T$

Assume homogeneity: $g_i(s) = g(s), i = 1, \dots, n$

The transfer matrix from input u to output y:

$$T(s) = V \operatorname{diag} \left\{ \frac{1}{g^{-1}(s) + f(s)\lambda_i(L)} \right\}_{i=1}^n V^T$$

$$V = [1/\sqrt{n}, V_{\perp}], \ \lambda_1(L) = 0$$

$$T(s) = \frac{1}{n}g(s)\mathbb{1}^{T} + V_{\perp}\operatorname{diag}\left\{\frac{1}{g^{-1}(s) + f(s)\lambda_{i}(L)}\right\}_{i=2}^{n} V_{\perp}^{T}$$

Coherent dynamics independent of the network structure

Dynamics dependent of the network structure

$$T(s) = \frac{1}{n}g(s)\mathbb{1}\mathbb{1}^T + V_{\perp}\operatorname{diag}\left\{\frac{1}{g^{-1}(s) + f(s)\lambda_i(L)}\right\}V^T$$

The effect of non-coherent dynamics vanishes as:

- The algebraic connectivity $\lambda_2(L)$ of the network increases
 - For almost any $s_0 \in \mathbb{C}$

$$\lim_{\lambda_2(L) \to +\infty} \left\| T(s_0) - \frac{1}{n} g(s_0) \mathbb{1} \mathbb{1}^T \right\| = 0$$

• The point of interest gets close to a **pole** of f(s)

For $s_0 \in \mathbb{C}$, a pole of f(s)

$$\lim_{s \to s_0} \left\| T(s) - \frac{1}{n} g(s) \mathbb{1} \mathbb{1}^T \right\| = 0$$

Our frequency-dependent coherence measure $\left\|T(s) - \frac{1}{n}g(s)\mathbb{1}\mathbb{1}^T\right\|$ is controlled by the effective algebraic connectivity $|f(s)|\lambda_2(L)$

The transfer matrix from input u to output y:

$$T(s) = V \left(V^T \operatorname{diag} \{ g_i^{-1}(s) \} V + f(s) \Lambda \right)^{-1} V^T$$

8

The transfer matrix from input u to output y:

$$T(s) = V \left(V^T \operatorname{diag}\{g_i^{-1}(s)\}V + f(s)\Lambda \right)^{-1} V^T$$

$$T(s) = \begin{bmatrix} \frac{1}{n} \bar{g}(s) \mathbb{1} \mathbb{1}^T \\ N(s) \end{bmatrix} + \begin{bmatrix} N(s) \\ Network \\ Network$$

8

Informed guess for coherent dynamics: $\overline{g}(s)$

Block Diagram:

Coherent Dynamics:

$$\bar{y}(s) = \left(\frac{1}{n}\sum_{i=1}^n g_i^{-1}(s)\right)^{-1} \frac{1}{n}\sum_{i=1}^n u_i(s) \left| \begin{array}{c} \text{Average equations from } i=1 \text{ to } n: \\ \text{Average equations from } i$$

$$\bar{g}(s) = \left(\frac{1}{n} \sum_{i=1}^{n} g_i^{-1}(s)\right)^{-1}$$

Harmonic mean of all $g_i(s)$

Dynamics for node *i*

$$y_i(s) = g_i(s)(u_i(s) - d_i(s)), i = 1, \dots, n$$

Assume all nodes output are **identical** as the result of coherence

$$g_i^{-1}(s)\bar{y}(s) = u_i(s) - d_i(s), \ i = 1, \dots, n$$

$$\left(\frac{1}{n}\sum_{i=1}^{n}g_{i}^{-1}(s)\right)\bar{y}(s) = \frac{1}{n}\sum_{i=1}^{n}u_{i}(s) - \left[\frac{1}{n}\sum_{i=1}^{n}d_{i}(s)\right]$$

 $\mathbb{1}^T L = \mathbb{0}$

$$T(s) = \frac{1}{n}\bar{g}(s)\mathbb{1}\mathbb{1}^T + T(s) - \frac{1}{n}\bar{g}(s)\mathbb{1}\mathbb{1}^T$$

$$\bar{g}(s) = \left(\frac{1}{n} \sum_{i=1}^{n} g_i^{-1}(s)\right)^{-1}$$

The effect of non-coherent dynamics vanishes as:

• For almost any $s_0 \in \mathbb{C}$

$$\lim_{\lambda_2(L) \to +\infty} \left\| T(s_0) - \frac{1}{n} \bar{g}(s_0) \mathbb{1} \mathbb{1}^T \right\| = 0 \qquad \lim_{s \to s_0} \left\| T(s) - \frac{1}{n} \bar{g}(s) \mathbb{1} \mathbb{1}^T \right\| = 0$$

• For $s_0 \in \mathbb{C}$, a pole of f(s)

$$\lim_{s \to s_0} \left\| T(s) - \frac{1}{n} \overline{g}(s) \mathbb{1} \mathbb{1}^T \right\| = 0$$

- Excluding zeros: the limit holds at zero, but by different convergence result
- We can further prove uniform convergence over a compact subset of complex plane, if it doesn't contain any zero nor pole of $\bar{g}(s)$
- Convergence of transfer matrix is **related to time-domain response** by Inverse Laplace Transform
- Extensions for random network ensembles $\bar{g}(s) = (E_w[g^{-1}(s, w)])^{-1}$

Coherent dynamics acts as a more accurate version of the Center of Inertia (CoI)

Outline

- Characterization of Coherent Dynamics [Min, M '21]
- Reduced-Order Model of Coherent Response [Min, Paganini, M '21]

Accurate Reduced-Order Models for Heterogeneous Coherent Generators

Hancheng Min, Fernando Paganini, and Enrique Mallada

IEEE Control Systems Letters, 2021

Aggregation of Coherent Generators

 m_i : inertia

 d_i : damping coefficient

 r_i^{-1} : droop coefficient

 τ_i : turbine time constant

coherent group of n generators

Aggregation of Coherent Generators

Question: How to choose the different parameters of $\hat{g}(s)$?

coherent group of n generators

$$\hat{g}(s) = \frac{1}{\hat{m}s + \hat{d} + \frac{\hat{r}^{-1}}{\hat{\tau}s + 1}}$$

13

Answer: Use instead

$$\hat{g}(s) = \frac{1}{n}\bar{g}(s) = \left(\sum_{i=1}^{n} g_i^{-1}(s)\right)^{-1}$$

Aggregation for Homogeneous $au_i = au$

$$g_i(s) = \frac{1}{m_i s + d_i + \frac{r_i^{-1}}{\tau_i s + 1}}$$

then
$$\hat{m} = \sum_{i=1}^{n} m_i$$
, $\hat{d} = \sum_{i=1}^{n} d_i$, $\hat{r}^{-1} = \sum_{i=1}^{n} r_i^{-1}$

suppose $au_i = au$

Aggregation

$$\hat{g}(s) = \frac{1}{\hat{m}s + \hat{d} + \frac{\hat{r}^{-1}}{\hat{\tau}s + 1}}$$

$$\hat{g}(s) = \frac{1}{(\sum_{i=1}^{n} m_i)s + (\sum_{i=1}^{n} d_i) + \frac{1}{\tau s + 1}(\sum_{i=1}^{n} r_i^{-1})}$$

Challenges on Aggregating Coherent Generators

For generator dynamics given by a swing model with turbine control:

$$g_i(s) = rac{1}{m_i s + d_i + rac{r_i^{-1}}{ au_i s + 1}}$$

The aggregate dynamics:

Need to find a low-order approximation of $\hat{g}(s)$

$$\hat{g}(s) = \frac{1}{\hat{m}s + \hat{d} + \sum_{i=1}^{n} \frac{r_i^{-1}}{\tau_i s + 1}}$$

high-order if τ_i are heterogeneous

Enrique Mallada (JHU)

Prior Work: Aggregation for heterogeneous τ_i s

When time constants are **heterogenous**:

Drawbacks:

- the order of overall approximation model is restricted to 2nd order
- the only "decision variable" is the time constant
- does not consider the effect of inertia or damping in the approx.

Inaccurate Approximation

Balanced Truncation

A model reduction method on stable system G(s) such that:

- The reduced model $G_{red}(s)$ is stable
- The error in H_{∞} -norm:

$$\|G(s) - G_{red}(s)\|_{\mathcal{H}_{\infty}}$$

is upper bounded by a small value that depends on G(s) and the order of $G_{red}(s)$

k-th order $G_{red}(s)$ is obtained by only keeping states of G(s) associated with k largest Hankel Singular Value

There is DC gain mismatch between G(s) and $G_{red}(s)!!$

Frequency Weighted Balanced Truncation

A frequency weighted model reduction method on stable system G(s) such that:

- The reduced model $G_{red}(s)$ is stable
- The frequency weighted error in H_{∞} -norm:

$$||W(s)(G(s) - G_{red}(s))||_{\mathcal{H}_{\infty}}$$

is upper bounded by a small value that depends on G(s) and the order of $G_{red}(s)$) and W(s)

k-th order $G_{red}(s)$ is obtained by only keeping states of G(s) associated with k largest frequency weighted Hankel Singular Value

The DC gain mismatch between G(s) and $G_{red}(s)$ can be made arbitrarily small weighting higher low freqs.

Aggregation Model by Frequency Weighted Balanced Truncation

Two approaches to get a k-th order reduction model of aggregate dynamics $\hat{g}(s)$:

• (k-1)-th order balanced truncation on high-order turbine dynamics

$$\tilde{g}_k^{tb}(s) = \frac{1}{\hat{m}s + \hat{d} + \underbrace{\tilde{g}_{t,k-1}(s)}}$$
 (k-1)-th reduction model on $\sum_{i=1}^n \frac{r_i^{-1}}{\tau_i s + 1}$

ullet k-th order balanced truncation on closed-loop dynamics $\hat{g}(s)$

19

Numerical Simulation—Matching DC Gain in Balanced Truncation

Compare 2nd order model by balanced truncation on turbine dynamics with different weights: $W_1(s)=1$ (unweighted) $W_2(s)=\frac{s+3\cdot 10^{-2}}{s+10^{-4}}$ (weighted)

Numerical Simulation—Compare Models by Balanced Truncation

We compare the following 4 reduced order models:

- Balanced truncation on **turbine** dynamics with weight $W_{tb}(s) = \frac{s+3\cdot 10^{-2}}{s+10^{-4}}$
 - 2nd order (BT2-tb)
 - 3rd order (BT3-tb)
- Balanced truncation on closed-loop dynamics with weight $W_{cl}(s) = \frac{s+8\cdot 10^{-2}}{s+10^{-4}}$
 - 2nd order (BT2-cl)
 - 3rd order (BT3-cl)

- 3rd order models are almost accurate
- balanced truncation on closed-loop is better than on turbine dynamics, given the same order

Interpretation of 3rd Order Reduced Model

- The high-order turbine dynamics can be almost accurately recovered by two turbines in parallel
- Such approximation works for aggregating even more turbines than in the test case

Summary

 Frequency domain characterization of coherent dynamics, as a low rank property of the transfer function.

- Coherence is a frequency dependent property:
 - Effective algebraic connectivity $f(s)\lambda_2(L)$
 - Disturbance frequency spectrum
- We use frequency weighted balanced truncation to suggest possible improvements to obtain accurate reduced order model of aggregated dynamics of coherent generators:
 - increase model complexity (3rd order/two turbines)
 - model reduction on closed-loop dynamics

Thanks!

Related Publications:

- Min, M, "Coherence and Concentration in Tightly Connected Networks," submitted
- Min, Paganini, M, "Accurate Reduced Order Models for Coherent Synchronous Generators," L-CSS 2021
- Jiang, Bernstein, Vorobev, M, "Grid-forming Frequency Shaping Control," L-CSS 2021

Enrique Mallada mallada@jhu.edu http://mallada.ece.jhu.edu

Andrey Bernstein Fernando Paganini