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Coherence in Power Networks

i St u d | e d S | nce t h e 7OS Power Electronics and Power Systems

* Podmore, Price, Chow, Kokotovic, Verghese,
Pai, Schweppe,...

* Enables aggregation/model reduction JoeH. Chow Editor
* Speed up transient stability analysis
Power System
* Many important questions Coherency and

* How to identify coherent modes? .
* How to accurately reduce them? MOde' REdUCtlon
* What is the cause?

 Many approaches
* Timescale separations (Chow, Kokotovic,)
* Krylov subspaces (Chaniotis, Pai ‘01)
» Balanced truncation (Liu et al ‘09)

 Selective Modal Analysis (Perez-Arriaga,
Verghese, Schweppe ‘82)
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Goals:
1. Characterize the coherence response from a frequency domain perspective
2. Leverage the coherence response to obtain accurate reduced order models
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Outline

* Characterization of Coherent Dynamics [Min, M ‘21]

* Reduced-Order Model of Coherent Response [Min, Paganini, M 21}
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Coherence in networked dynamical systems

Block Diagram:

— (O diag{gi(s)}

— A

Y

f(s)L

A

Node dynamics: g¢;(s),2=1,2,---,n
Symmetric Real Network Laplacian: L

L=VAVY vV =1[1/yn,V]

Coupling dynamics: f(s)

Examples:
* Consensus Networks:
1
gi(s) = <
fls)=1
* Power Networks (2"? order generator):
1
gi(s) = 1
;s —|_ dz —|_ Ti;—l—l
1
s) = —
fls) = -
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Coherence in networked dynamical systems

Block Diagram:

U ) Y ? 1 n _
—— (O diag{gi(s); > > n izl i 3(s) y
1.When does this 2.What is the exact
f(s)L |« network exhibit coherent dynamics of
coherence? this network?

1. Coherence can be understood as a low rank
property the closed-loop transfer matrix

—1

. . ) 1 <~

2. It emerges as the effective algebraic g(s) = | — § g: (s)

1
connectivity increases n i—1

3. The coherent dynamics is given by the
harmonic mean of nodal dynamics
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Network Coherence: Homogeneous Case

Assume homogeneity: g;(s) =g(s), i =1,---,n
U
>i> > g(s)] o
f(s)L <

Eigendecomposition [, = VAV
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Network Coherence: Homogeneous Case

Assume homogeneity: g;(s) =g(s), i =1,---,n

Y
O
\
N
~—~
Va
N——"
~
®

A -

A\ \_/V

Y

Redistribute V, V1

Oct 27 2021 Enrique Mallada (JHU)



Network Coherence: Homogeneous Case

Assume homogeneity: g;(s) =g(s), i =1,---,n

Merge forward path
Viv =1

— VT —»Q—» \V4 g(s)] VT °

=

2
>
A
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Network Coherence: Homogeneous Case

Assume homogeneity: g;(s) =g(s), i =1,---,n
U T
L v O | g(s)1

=

2
>
A
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Network Coherence: Homogeneous Case

Assume homogeneity: ¢i(s) =g(s), i=1,---,n
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Network Coherence: Homogeneous Case

Assume homogeneity: gi(s) =g(s), t=1,---,n
The transfer matrix from input u to output y :

. 1 ' T
T'(s) = Vdiag {gl(s) + f(s)Ni(L) }z'zl Y

YNNG @

7o) = o2 Ve ey )V

Coherent dynamics Dynamics dependent of
independent of the the network structure
network structure
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Network Coherence: Homogeneous Case

1 , 1
Tle) = o117 HVading o s 1V
The effect of non-coherent dynamics vanishes as:
* The algebraic connectivity \o(L) of * The point of interest gets close
the network increases to a pole of f(s)
For almost any sg € C For sop € C, a pole of f(s)
AQ(Lli)IL1+oo ‘ T(sg) — %g(so)llT =0 Sli_)rglo T(s) — %g(s)llT =0

Our frequency-dependent coherence measure ||T'(s) — 2g(s)117|| is
controlled by the effective algebraic connectivity | f(s)|A\2(L)
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Network Coherence: Heterogeneous Case
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Network Coherence: Heterogeneous Case

A

diag{g; '(s)} — I

Y

Y

()=
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Network Coherence: Heterogeneous Case

A

VTdiag{g; '(s)}V — I

vy <
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Network Coherence: Heterogeneous Case

A

VTdiag{g; '(s)}V — I
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Network Coherence: Heterogeneous Case

Oct 27 2021

1

Y

(V' diag{g; '(s)}V + f(s)A)

vy <

The transfer matrix from input u to output y :

T(s) =V (VT diag{g; " (s)}V + f(s)A) " VT
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Network Coherence: Heterogeneous Case

Oct 27 2021

The transfer matrix from input u to output y :

T(s) = V (VT diag{g; " (s)}V + f(s)A) " V7

.

g(s)11%|+H N(s)

1
n

Coherent Network
Dynamics?  dependent?
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Informed guess for coherent dynamics: g(s)

Block Diagram: Dynamics for node i

}

——()—{ diag{gi(s)} J_, yi(s) = gi(s)(u;(s) —di(s)), 1=1,---,n

d Assume all nodes
output are identical l yi(s) = y(s)
as the result of
L coherence

A

Coherent Dynamics: g{l(s)g(s) = ui(s) —di(s), i=1,---,n

—1

; IS - N A tions from i = 1 to n: T

= (n P 1(8)> ﬁzui(s) verage equations from i on 177, =0
1=1 1=1

1n i (% ng(s)) 9() = — S wils) |- D di(s)
?](S) _ (_ ' 1(8)) 1=1 1=1 1=1

1=1 =0

Harmonic mean of all g;(s)
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Network Coherence: Heterogeneous Case

Zgz

T(s) = —(s)127 4| T(s) — ~g(s)11"

The effect of non-coherent dynamics vanishes as:

* Foralmostany sy € C * For sp € C,apoleof f(s)
1 1
I T(s0) — —g(s0)11" || =0 lim [|T(s) — =g(s)117|| =
wim | (50) — —g(s0) Jim | T(s) — —g(s) 0

e Excluding zeros: the limit holds at zero, but by different convergence result
e We can further prove uniform convergence over a compact subset of complex plane, if it doesn’t contain any

zero nor pole of g(s)
e Convergence of transfer matrix is related to time-domain response by Inverse Laplace Transform
e Extensions for random network ensembles g(s) = (E,,[ g (s, w)])~?!

10
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Effect of Network Algebraic Connectivity 1, (L)1

200 ; ; ; 200
— — Coherent Dynamics — — Coherent Dynamics
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Coherent dynamics acts as a more accurate version of the Center of Inertia (Col)
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Sinusoidal Disturbances: sin(w g t) wy T
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Outline

* Characterization of Coherent Dynamics [Min, M ‘21]

* Reduced-Order Model of Coherent Response [Min, Paganini, M 21}



Accurate Reduced-Order Models for Heterogeneous Coherent Generators

Hancheng Min, Fernando Paganini, and Enrique Mallada
IEEE Control Systems Letters, 2021




Aggregation of Coherent Generators

m;: 1Inertia
i ( 8) _ — al?;_:1 damping coefficient

m;s + d; + " r, o dr(?op (Eoefﬁ(nent
T;: turbine time constant

disturbance U1

coherent group of n generators
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Aggregation of Coherent Generators

Oct 27 2021

coherent éroup of n generators

Enrique Mallada (JHU)

Question: How to choose the
different parameters of §(s)?

Aggregation
— /
-—==- Zz 1 Uy : : : W

Answer: Use instead

g(s) = % (Zg )1

13



Aggregation for Homogeneous 7; = T

n
then m = Zm@',
1=1

suppose T, =T

disturbance U1

coherent éroup of n generators

Oct 27 2021

Aggregation

—

N

i=1 Wi () W

(T ma)s+ (O di) + %H(Z?ﬂ i)
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Challenges on Aggregating Coherent Generators

For generator dynamics given by a swing model with
turbine control:

1
gi(s) — 1
m;s + d; + s

_ Need to find a low-order
The aggregate dynamics: approximation of §(s)

1

o) = ——
ms +d +‘Zi:l n§+1\

high-order if 7; are heterogeneous
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Prior Work: Aggregation for heterogeneous 7;s

When time constants are heterogenous:

Drawbacks:

e the order of overall approximation model is restricted to 2nd order
e the only “decision variable” is the time constant
e does not consider the effect of inertia or damping in the approx.

Oct 27 2021

Aggregating
heterogenous

turbine dynamics

Tns + 1

Time constant T is chosen by:
- Optimization: Germond’78, Guggilam’18
- Weighted harmonic mean: Ourari’06

Inaccurate
Approximation

16
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Balanced Truncation

A model reduction method on stable
system G (s) such that:

e The reduced model G,4(s) is
stable
e The error in Hy,-norm:

IG(s) = Grea(s)lly..

is upper bounded by a small value
that depends on G (s) and the order

of Greq(S)

Oct 27 2021

k-th order G,.4(s) is obtained by only keeping states of
G (s) associated with k largest Hankel Singular Value

e T¥gical Distribution of Hankel Singular Values

Greq (S) is 2nd order -
if two states are kept

15

Order

There is DC gain mismatch between G(s) and G,..4(s)!!
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Frequency Weighted Balanced Truncation

A frequency weighted model

reduction method on stable system
G (s) such that:

e The reduced model G,4(s) is
stable

e The frequency weighted error in
H,,-norm:

W (s)(G(s) = Grea(s))|[#

is upper bounded by a small value
that depends on G (s) and the order
of G,oq(s) ) and W (s)

Oct 27 2021

k-th order G,.4(s) is obtained by only keeping states of
G (s) associated with k largest frequency weighted
Hankel Singular Value

e T_¥1gical Distribution of Hankel Singular Values

Greq (S) is 2nd order |
if two states are kept

15

Order

The DC gain mismatch between G(s) and G,.4(s) can
be made arbitrarily small weighting higher low freqs.
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Aggregation Model by Frequency Weighted Balanced Truncation

Two approaches to get a k-th order reduction model of aggregate dynamics g(s):
e (k-1)-th order balanced truncation on high-order turbine dynamics

1
~tb
gr (8) = ———=
g ms + d +[9¢.k—1(5)

(k-1)-th reduction model on Z
i=1

1
r;

TZ‘S—F].

e k-th order balanced truncation on closed-loop dynamics g(s)

19
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Numerical Simulation—Matching DC Gain in Balanced Truncation

Compare 2nd order model by balanced truncation on turbine dynamics

with different weights: Wi(s) =1 (unweighted) W(s) =

400

Step Response

350

300

Frequency (mHz)
N
o
o

—_
)]
o

100

50 |

0

—— Coherent 50

s+3-102

Bode Plot of Weight W5(s) =

and Turbine Dynamics g:(s) = >

+ 104

(weighted)

5431072
s+10~4

5 1t

i=1 7i5+1

-------- BT2-tb (unweighted) | |
- = BT2-tb (weighted) o)
(2% -50 -

T T T T T

— Weight Ws(s)
— -Turbine Dynamics g;(s)

-100

T T T T Y T TL

T T T T
-~
-~

Phase (rad)

15 4 4 iun

~ -
P T S S A

10°® 10°° 107 107 1072 107
- Frequency (rad/s)

10° 10° 10?

low frequency range

Oct 27 2021

Time (s)

35

40

DC gain is matched by putting more weights on

45 50
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Numerical Simulation—Compare Models by Balanced Truncation

We compare the

Step Response

Step Response Error

400 . 20 |
following 4 reduced ol — Conernt] A o
order models: 300_ ﬂ __EEICE | 10_;_. e
"""" . 8 s i P S B e s
e Balanced truncation on £=°| \ A ': :___.i,"'“- ST |
turbine dynamics with gzoo- >10 N
weight W (s) = % 8 150 A g | v
- 2nd order (BT2-tb) wof A
- 3rd order (BT3-tb) 50 ) | oof
e Balanced truncation on s m B s @ om0 s w0 B w m Tw % e 6 W

closed-loop dynamics

with weight w(s) = =810~

- 2nd order (BT2-cl)
- 3rd order (BT3-cl)

e 3rd order models are almost accurate
e balanced truncation on closed-loop is better than on turbine
dynamics, given the same order

Oct 27 2021 Enrique Mallada (JHU)
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Interpretation of 3rd Order Reduced Model

Oct 27 2021

Ut
718+ 1
—1
- /rS
TsS + 1
—1
R 47 . . |::> _+
.5+ 1 4 )
. "y
TfS—l— 1

Tns + 1

The high-order turbine dynamics can be almost accurately
recovered by two turbines in parallel

Such approximation works for aggregating even more turbines
than in the test case

Enrique Mallada (JHU)
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Summary

* Frequency domain characterization of coherent dynamics, as a low rank property
of the transfer function.

* Coherence is a frequency dependent property:
* Effective algebraic connectivity f(s)A,(L)
 Disturbance frequency spectrum

* We use frequency weighted balanced truncation to suggest possible
improvements to obtain accurate reduced order model of aggregated dynamics

of coherent generators:
- increase model complexity (3" order/two turbines)

- model reduction on closed-loop dynamics
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